Skip to main content

Abstract

Identification of cellular populations is the first step in analyzing cytometry data. To identify both abundant and outlying rare cellular populations a density-based preprocessing of data to equalize representations of populations is needed. Density-based downsampling keeps representative points in the cellular space while discarding irrelevant ones. We propose a fast and fully deterministic algorithm for density calculation, based on space partitioning, tree representation and an iterative approach to downsampling utilizing fast calculation of density. We compared our algorithm with SPADE, the most used approach in this area, achieving comparable results in a significantly shorter runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir, E.A.D., et al.: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31(6), 545–552 (2013)

    Article  Google Scholar 

  2. Bruggner, R.V., et al.: Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl. Acad. Sci. 111(26), E2770–E2777 (2014)

    Article  Google Scholar 

  3. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  4. Levine, J., et al.: Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate with prognosis. Cell 162(1), 184–197 (2015)

    Article  Google Scholar 

  5. Li, H., et al.: Gating mass cytometry data by deep learning. Bioinformatics 33(21), 3423–3430 (2017)

    Article  Google Scholar 

  6. Qiu, P.: Toward deterministic and semiautomated SPADE analysis. Cytometry. Part: J. Int. Soc. Anal. Cytol. 91, 281–289 (2017)

    Article  Google Scholar 

  7. Qiu, P., et al.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29(10), 886–891 (2011)

    Article  Google Scholar 

  8. Saeys, Y., et al.: Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16(7), 449–462 (2016)

    Article  Google Scholar 

  9. Spitzer, M., Nolan, G.: Mass cytometry: single cells, many features. Cell 165(4), 780–791 (2016)

    Article  Google Scholar 

  10. Tanner, S.D., et al.: An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother. 62(5), 955–965 (2013)

    Article  Google Scholar 

  11. Verschoor, C.P., et al.: An introduction to automated flow cytometry gating tools and their implementation. Front. Immunol. 6, 380 (2015)

    Article  Google Scholar 

  12. Weber, L.M., Robinson, M.D.: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytom. Part A 89(12), 1084–1096 (2016)

    Article  Google Scholar 

  13. Zare, H., et al.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform. 11(1), 403 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Scientific Grant Agency of The Slovak Republic, Grant No. VG 1/0458/18 and APVV-16-0484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Jarábek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nemček, M., Jarábek, T., Lucká, M. (2020). Parallel Density-Based Downsampling of Cytometry Data. In: Fdez-Riverola, F., Rocha, M., Mohamad, M., Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Computational Biology and Bioinformatics, 13th International Conference. PACBB 2019. Advances in Intelligent Systems and Computing, vol 1005 . Springer, Cham. https://doi.org/10.1007/978-3-030-23873-5_11

Download citation

Publish with us

Policies and ethics