Skip to main content

Computational Assessment of the Microstructure-Dependent Thermomechanical Behaviour of AlSi12CuNiMg-T7—Methods and Microstructure-Based Finite Element Analyses

  • Chapter
  • First Online:
Advances in Mechanics of High-Temperature Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 117))

Abstract

In this paper, the influence of the microstructure of a cast aluminium alloy used for pistons in combustion engines on the local and global deformation behavior is investigated by means of microstructure-based cell models and the finite element method. Therefore, a representative microstructure is digitized using nano computer tomography. In the digitized and segmented data, the aluminium matrix, silicon particles, pores and two intermetallic phases are distinguished. Microstructure-based cell models are created and linear-elastic, thermal and viscoplastic material properties are assigned for the finite element simulation in ABAQUS/Standard. The elastic, macroscopic nearly isotropic material behavior is shown for 64 different microstructure-based cell models with 200 \(\times \) 200 \(\times \) 200 elements with microstructure-dependent material properties at room temperature. A microstructure cell is subjected to a thermal cycle with zero macroscopic loading in order to examine the influence of the thermal mismatch between the individual microstructure phases on the resulting stresses and strains on the micro level. High stresses at interfaces of silicon particles and the aluminium matrix occur in the linear-elastic simulation, whereas an elastic-viscoplastic material behavior of the aluminium matrix leads to a overall stress relief in the microstructure cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, Y.X., Yi, J.Z., Lee, P.D., et al.: A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminium alloys. Acta Materalia 52, 5435–5449 (2004)

    Article  Google Scholar 

  2. Teranishi, M., Kuwazuru, O., Gennai, S., et al.: Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cylic loading. Mater. Sci. Eng. A 678, 273–285 (2016)

    Article  Google Scholar 

  3. Krätschmer, D.M.: Bewertung mikrostruktureller Werkstoffschädigung bei Schwingbeanspruchung mit stochastischen Methoden. Ph.D. Thesis, University of Stuttgart, Germany (2011)

    Google Scholar 

  4. Gall, K., Horstemeyer, M.F., McDowell, D.L., et al.: Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al–Si alloys. Mech. Mater. 32, 277–301 (1999)

    Article  Google Scholar 

  5. Kenningley, S., Morgenstern, R.: Transient mircomechanical deformation and thermomechanical fatigue damage in AlSi based piston alloys under superimposed high cycle mechanical and low cycle thermal loading. Mater. Test. 57, 155–159 (2015)

    Article  Google Scholar 

  6. Moffat, A.J: Micromechanistic analysis of fatigue in aluminium silicon casting alloys. Ph.D. Thesis, University of Southampton, Great Britain (2007)

    Google Scholar 

  7. Fan, J., McDowell, D.L., Horstemeyer, M.F., et al.: Computational micromechanics analysis of cyclic crack-tip behavior for microstructurally small cracks in dual-phase Al–Si alloys. Eng. Fract. Mech. 68, 1687–1706 (2001)

    Article  Google Scholar 

  8. McDowell, D.L., Gall, K., Horstemeyer, M.F., et al.: Microstructure-based fatigue modeling of cast A356–T6 alloy. Eng. Fract. Mech. 70, 49–80 (2003)

    Article  Google Scholar 

  9. Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35(2), 151–183 (1987)

    Article  Google Scholar 

  10. Chawla, N., Chawla, K.K.: Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J. Mater. Sci. 41, 913–925 (2006)

    Article  Google Scholar 

  11. Chawla, N., Sidhu, R.S., Ganesh, V.V.: Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Materialia 54, 1541–1548 (2006)

    Article  Google Scholar 

  12. Ganesh, V.V., Chawla, N.: Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructured-based simulation. Mater. Sci. Eng. A 391, 342–353 (2005)

    Article  Google Scholar 

  13. Chawla, N., Deng, X.: Microstructure and mechanical behavior of porous sintered steels. Mater. Sci. Eng. A 390, 98–112 (2005)

    Article  Google Scholar 

  14. Metzger, M., Seifert, T.: Computational assessment of the microstructure-dependent plasticity of lamellar gray cast iron - Part I: methods and microstructure-based models. Int. J. Solids Struct. 66, 184–193 (2015)

    Article  Google Scholar 

  15. Dezecot, S., Maurel, V., Buffiere, J.Y., et al.: 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminium alloy. Acta Materialia 123, 23–34 (2017)

    Article  Google Scholar 

  16. Eckmann, S.: Entwicklung eines Finite-Elemente-Mikrostrukturmodells zur Untersuchung des Schädigungsverhaltens einer AlSi-Legierung. Seminar paper, University of Applied Sciences Offenburg, Germany (2014)

    Google Scholar 

  17. Asghar, Z., Requena, G., Degischer, H.P., et al.: Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography. Acta Materalia 57, 4125–4132 (2009)

    Article  Google Scholar 

  18. Schneiders, R., Schindler, R., Weiler, F.: Octree-based generation of hexahedral element meshes. In: Proceedings of the 5th International Meshing Roundtable (1996)

    Google Scholar 

  19. Owen, S.J., Brown, J.A., Ernst, C.D., et al.: Hexahedral mesh generation for computational materials modeling. Procedia Eng. 203, 167–179 (2017)

    Article  Google Scholar 

  20. Fan, J., McDowell, D.L., Horstemeyer, M.F., et al.: Cyclic plasticity at pores and inclusions in cast Al–Si alloys. Eng. Fract. Mech. 70, 1281–1302 (2003)

    Article  Google Scholar 

  21. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strains. Proceeding R. Soc. A 326, 131–147 (1972)

    Article  Google Scholar 

  22. Suquet, P.: Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E. (eds.) Homogenization Techniques for Composite Media, pp. 194–275. Springer, Berlin (1987)

    Google Scholar 

  23. Python. https://www.python.org/ Accessed 18 Feb 2019

  24. ABAQUS 6.14 Documentation

    Google Scholar 

  25. Smith, J.F., Zheng, S.: High temperature nanoscale mechanical property measurements. Surf. Eng. 16(2), 143–146 (2000)

    Article  Google Scholar 

  26. Chen, C.L.: Characterisation of intermetallic phases in multicomponent Al–Si alloys for piston applications. Ph.D. Thesis, Loughborough University, Great Britain (2006)

    Google Scholar 

  27. Hopcroft, A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)

    Article  Google Scholar 

  28. Ang, W.C., Kroplinicki, P., Soe, O., et al.: Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater. J. Micromechanics Microengineering 22, 085015 (2012)

    Article  Google Scholar 

  29. Cho, C.H.: Characterization of Young’s modulus of silicon versus temperature using a “beam deflection” method with a four-point bending fixture. Curr. Appl. Phys. 9(2), 538–545 (2009)

    Article  Google Scholar 

  30. Nakao, S., Ando, T., Shikida, M., et al.: Mechanical properties of a micron-sized SCS film in a high-temperature environment. J. Micromechanics Microengineering 16, 715–720 (2006)

    Article  Google Scholar 

  31. Namazu, T., Isono, Y., Tanaka, T.: Plastic deformation of nanometric single crystal silicon wire in AFM bending test at intermediate temperatures. J. Microelectromechanical Syst. 11(2), 125–135 (2002)

    Article  Google Scholar 

  32. Belov, N.A., Eskin, D.G., Avxentieva, N.N.: Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys. Acta Materialia 53, 4709–4722 (2005)

    Article  Google Scholar 

  33. Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5, 247–302 (1989)

    Article  Google Scholar 

  34. Hirsch, P.B., Roberts, S.G.: The brittle-ductile transition in silicon. Philos. Mag. 64(1), 55–80 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors from the Fraunhofer Institute for Mechanics of Materials IWM would like to thank Simon Zabler from the project group NanoCT Systeme at the Fraunhofer Institute for Integrated Circuits IIS in Würzburg and Maximilian Ullherr from the University of Würzburg for the digitization of the microstructure volume and the segmentation of the respective data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, C., Reichenbacher, A., Metzger, M., Schweizer, C. (2020). Computational Assessment of the Microstructure-Dependent Thermomechanical Behaviour of AlSi12CuNiMg-T7—Methods and Microstructure-Based Finite Element Analyses. In: Naumenko, K., Krüger, M. (eds) Advances in Mechanics of High-Temperature Materials. Advanced Structured Materials, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-23869-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23869-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23868-1

  • Online ISBN: 978-3-030-23869-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics