Skip to main content

Hardy Spaces for the Three-Dimensional Vekua Equation

  • Chapter
  • First Online:
Book cover Topics in Clifford Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 536 Accesses

Abstract

Let Ω be a bounded Lipschitz domain in \(\mathbb {R}^3\). We introduce the Vekua-Hardy spaces \(H_f^p(\Omega )\) of solutions of the main Vekua equation \(DW=(Df/f)\overline {W}\) where 1 < p < . Here W is quaternion-valued, D is the Moisil-Teodorescu operator, and the conductivity f is a bounded scalar function with bounded gradient. Using the Vekua-Hilbert transform \(\mathcal {H}_f\) defined in previous work of the authors, we give some characterizations of \(H_f^p(\Omega )\) analogous to those of the “classical” Hardy spaces of monogenic functions in \(\mathbb {R}^3\). The main obstacle is the lack of several fundamental analogues of properties of solutions to the special case DW = 0 (monogenic, or hyperholomorphic functions), such as power series and the Cauchy integral formula.

To Wolfgang Sprößig, with affection and respect

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces (Academic, New York, 1978)

    MATH  Google Scholar 

  2. A. Axelsson, K.I. Kou, T. Qian, Hilbert transforms and the Cauchy integral in Euclidean space. Stud. Math. 193, 161–187 (2009)

    Article  MathSciNet  Google Scholar 

  3. L. Baratchart, J. Leblond, S. Rigat, E. Russ, Hardy spaces of the conjugate Beltrami equation. J. Funct. Anal. 259, 384–427 (2010)

    Article  MathSciNet  Google Scholar 

  4. H. Begehr, Yu.A. Dubinskii, Some orthogonal decompositions of Sobolev spaces and applications. Colloq. Math. 89, 199–212 (2001)

    Article  MathSciNet  Google Scholar 

  5. L. Bers, Theory of Pseudo-analytic Functions (New York University, New York, 1953)

    MATH  Google Scholar 

  6. F. Brackx, H. De Schepper, F. Sommen, Clifford Analysis (Pitman Advanced Publishing Program, Boston, 1982)

    MATH  Google Scholar 

  7. F. Brackx, R. Delanghe, H. De Schepper, Hardy spaces of solutions of generalized Riesz and Moisil-Teodorescu systems. Complex Var. Elliptic Equ. 7(7–8), 1–15 (2011)

    MATH  Google Scholar 

  8. R.R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982)

    Google Scholar 

  9. D. Colton, Analytic Theory of Partial Differential Equations (Pitman Advanced Pub. Program, Boston, 1980)

    MATH  Google Scholar 

  10. B. Dahlberg, A note on H 1 and BMO, in Proceedings of the Pleijel conference, Uppsala (1979), pp. 23–30

    Google Scholar 

  11. B. Dahlberg, C. Kenig, Hardy spaces and the Neumann problem in L p for the Laplace’s equation in Lipschitz domains. Ann. Math. 125, 437–466 (1987)

    Article  MathSciNet  Google Scholar 

  12. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3 (Springer, Berlin, 1985)

    MATH  Google Scholar 

  13. B.B. Delgado, R.M. Porter, General solution of the inhomogeneous div-curl system and consequences. Adv. Appl. Clifford Algebr. 27, 3015–3037 (2017)

    Article  MathSciNet  Google Scholar 

  14. B.B. Delgado, R.M. Porter, Hilbert transform for the three-dimensional Vekua equation. Complex Var. Elliptic Equ. (2018). https://doi.org/10.1080/17476933.2018.1555246

  15. J.R. Diederich, Weyl’s lemma for pointwise solutions of elliptic equations. Proc. Am. Math. Soc. 37(2), 476–480 (1973)

    MathSciNet  MATH  Google Scholar 

  16. E. Fabes, C. Kenig, On the Hardy space H 1 of a C 1 domain. Ark. Mat. 19, 1–22 (1981)

    Article  MathSciNet  Google Scholar 

  17. J. Gilbert, M.A. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, vol. 26 (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  18. V. Girault, P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations (Springer, Berlin, 1986)

    Book  Google Scholar 

  19. P. Grisvard, Elliptical Problems in Nonsmooth Domains (Pitman (Advanced Publishing Program), Boston, 1985)

    MATH  Google Scholar 

  20. K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems (Birkhäuser Verlag, Berlin, 1990)

    Book  Google Scholar 

  21. K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008)

    Google Scholar 

  22. S. Hofmann, M. Mitrea, M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains. Int. Math. Res. Not. 14, 2567–2865 (2010)

    MathSciNet  MATH  Google Scholar 

  23. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, Berlin, 1998)

    Book  Google Scholar 

  24. C. Kenig, Weighted H p spaces on Lipschitz domains. Am. J. Math. 102(1), 129–163 (1980)

    Article  MathSciNet  Google Scholar 

  25. C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, Number 83 (American Mathematical Society, Rhode Island, 1994)

    Google Scholar 

  26. S.B. Klimentov, Hardy’s classes of generalized analytic functions. Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki 3, 6–10 (2003) [in Russian]

    Google Scholar 

  27. S.B. Klimentov, The Riemann-Hilbert problem in Hardy’s classes for general first-order elliptic systems. Russian Math. (Iz. VUZ) 60(6), 29–39 (2016)

    Google Scholar 

  28. V.V. Kravchenko, Applied Pseudoanalytic Function Theory. Frontiers in Mathematics (Birkhäuser, Basel, 2009)

    Google Scholar 

  29. V.V. Kravchenko, Applied Quaternionic Analysis (Heldenmann Verlag, Lemgo, 2003)

    Google Scholar 

  30. E. Marmolejo-Olea, D. Mitrea, I. Mitrea, M. Mitrea, Hardy spaces of Clifford algebra-valued monogenic functions in exterior domains and higher dimensional version of Cauchy’s vanishing theorem. Complex Var. Elliptic Equ. 62(9), 1374–1392 (2017)

    Article  MathSciNet  Google Scholar 

  31. M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy spaces. Lecture Notes in Mathematics, vol. 1575 (Springer, Berlin, 1994)

    Google Scholar 

  32. J. Morais, K. Avetisyan, K. Gürlebeck, On Riesz systems of harmonic conjugates in \(\mathbb {R}^3\). Math. Methods Appl. Sci. 36, 1598–1614 (2013)

    Google Scholar 

  33. T. Qian, Hilbert transforms on the Sphere and Lipschitz surfaces, in Hypercomplex Analysis, Trends Mathemathics, ed. by I. Sabadini, M. Shapiro, F. Sommen (Birkhäuser, Basel, 2008), pp. 259–275. https://doi.org/10.1007/978-3-7643-9893-4_16

    Chapter  Google Scholar 

  34. T. Qian, Y. Yang, Hilbert transforms on the sphere with the Clifford algebra setting. J. Fourier Anal. Appl. 15, 753–774 (2009)

    Article  MathSciNet  Google Scholar 

  35. D.W. Stroock, Weyl’s lemma, one of many, in Groups and Analysis. The Legacy of Hermann Weyl. Based on the Conference in Honour of Hermann Weyl, Bielefeld, September 2006, ed. by K. Tent (ed.) (Cambridge University Press, Cambridge). ISBN 978-0-521-71788-5/pbk. London Math. Soc. Lecture Note Ser. 354, 164–173 (2008)

    Google Scholar 

  36. I.N. Vekua, Generalized Analytic Functions (Nauka, Moscow, 1959) (in Russian). English translation (Pergamon Press, Oxford, 1962)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is pleased to express her gratitude to the APICS Team, INRIA, Sophia Antipolis, for the financial support provided for the stay realized in 2017. In particular, thanks to Dr. Juliette Leblond for her invaluable suggestions as well as for the introduction to this interesting topic of Hardy spaces of pseudo-analytic functions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Briceyda B. Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, B.B., Porter, R.M. (2019). Hardy Spaces for the Three-Dimensional Vekua Equation. In: Bernstein, S. (eds) Topics in Clifford Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23854-4_6

Download citation

Publish with us

Policies and ethics