Skip to main content

Simulation of Continuous Fibre Composite Forming

  • Chapter
  • First Online:
Mechanics of Fibrous Materials and Applications

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 596))

Abstract

The quality and properties of a composite material part depend not only on the fibres and matrix but also on how they have been manufactured. The numerical simulation of the forming of composites makes it possible not only to analyse the feasibility of a process and its defects but also to determine the directions of the reinforcements after the forming process. These directions strongly influence the mechanical behaviour of the composite part in service. Some approaches used to simulate the forming of woven reinforcements are described. In particular, a stress resultant triangular shell finite element specific to textile reinforcements is presented. The tests used for textile reinforcements in biaxial tension, in-plane shear and bending are presented. Finally, the simulation of thermoforming of thermoplastic prepreg is presented. During simulations, thermal and mechanical calculations are performed sequentially to update the mechanical properties with the evolution of the temperature field and the temperature field with the contact with the tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advani, S. G. (Ed.). (1994). Flow and rheology in polymer composites manufacturing (No. 10). Elsevier Science.

    Google Scholar 

  • Alshahrani, H., & Hojjati, M. (2017). A new test method for the characterization of the bending behavior of textile prepregs. Composites Part A Applied Science and Manufacturing, 97, 128–140.

    Article  CAS  Google Scholar 

  • ASTM. (2002). Standard test method for stiffness of fabrics, chap. D1388–D1396. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • Boisse, P. (2007) Finite element analysis of composite forming. In A. C. Long (Ed.), Composite forming technologies. Woodhead Publishing Limited.

    Google Scholar 

  • Boisse, P., Colmars, J., Hamila, N., Naouar, N., & Steer, Q. (2018). Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations. Composites Part B Engineering, 141, 234–249.

    Article  CAS  Google Scholar 

  • Boisse, P., Hamila, N., Guzman-Maldonado, E., Madeo, A., Hivet, G., & Dell’Isola, F. (2017). The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review. International Journal of Material Forming, 10(4), 473–492.

    Article  Google Scholar 

  • Boisse, P., Hamila, N., Vidal-Sallé, E., & Dumont, F. (2011). Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Composites Science and Technology, 71(5), 683–692.

    Google Scholar 

  • Boisse, P., Zouari, B., & Gasser, A. (2005). A mesoscopic approach for the simulation of woven fibre composite forming. Composites Science and Technology, 65(3–4), 429–436.

    Article  Google Scholar 

  • Buet-Gautier, K., & Boisse, P. (2001). Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Experimental Mechanics, 41(3), 260–269.

    Article  Google Scholar 

  • Bussetta, P., & Correia, N. (2018). Numerical forming of continuous fibre reinforced composite material: A review. Composites Part A Applied Science and Manufacturing, 113, 12–31.

    Article  CAS  Google Scholar 

  • Cao, J., Akkerman, R., Boisse, P., Chen, J., et al. (2008). Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Composites Part A, 39, 1037–1053.

    Article  CAS  Google Scholar 

  • Carvelli, V., Corazza, C., & Poggi, C. (2008). Mechanical modelling of monofilament technical textiles. Computational Materials Science, 42(4), 679–691.

    Article  CAS  Google Scholar 

  • Charmetant, A., Orliac, J. G., Vidal-Sallé, E., & Boisse, P. (2012). Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Composites Science and Technology, 72(12), 1352–1360.

    Article  CAS  Google Scholar 

  • Criscione, J. C., Douglas, A. S., & Hunter, W. C. (2001). Physically based strain invariant set for materials exhibiting transversely isotropic behavior. Journal of the Mechanics and Physics of Solids, 49(4), 871–897.

    Article  Google Scholar 

  • D’Agostino, M. V., Giorgio, I., Greco, L., Madeo, A., & Boisse, P. (2015). Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements. International Journal of Solids and Structures, 59, 1–17.

    Article  Google Scholar 

  • Dangora, L. M., Hansen, C. J., Mitchell, C. J., Sherwood, J. A., & Parker, J. C. (2015a). Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests. Composites Part A Applied Science and Manufacturing, 78, 181–190.

    Article  CAS  Google Scholar 

  • Dangora, L. M., Mitchell, C. J., & Sherwood, J. A. (2015b). Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture. Composites Part A Applied Science and Manufacturing, 78, 102–112.

    Article  CAS  Google Scholar 

  • Dangora, L. M., Mitchell, C., White, K. D., Sherwood, J. A., & Parker, J. C. (2018). Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model. International Journal of Material Forming, 11(1), 43–52.

    Article  Google Scholar 

  • Daniel, J. L., Soulat, D., Dumont, F., Zouari, B., Boisse, P., & Long, A. C. (2003). Forming of a very unbalanced fabric experiment and simulation. International Journal of Forming Processes, 6(3–4), 465–480.

    Article  Google Scholar 

  • De Bilbao, E., Soulat, D., Hivet, G., & Gasser, A. (2010). Experimental study of bending behaviour of reinforcements. Experimental Mechanics, 50(3), 333–351.

    Article  Google Scholar 

  • De Luca, P. L. A. P. P., Lefébure, P., & Pickett, A. K. (1998). Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Composites Part A Applied Science and Manufacturing, 29(1–2), 101–110.

    Article  Google Scholar 

  • Döbrich, O., Gereke, T., Diestel, O., Krzywinski, S., & Cherif, C. (2014). Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation. Journal of Industrial Textiles, 44(1), 70–84.

    Article  Google Scholar 

  • Dörr, D., Schirmaier, F. J., Henning, F., & Kärger, L. (2017). A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. Composites Part A Applied Science and Manufacturing, 94, 113–123.

    Article  CAS  Google Scholar 

  • Durville, D. (2010). Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. International Journal of Material Forming, 3(2), 1241–1251.

    Article  Google Scholar 

  • Fetfatsidis, K. A., Sherwood, J. A., Chen, J., & Jauffres, D. (2009). Characterization of the fabric/tool and fabric/fabric friction during the thermostamping process. International Journal of Material Forming, 2(1), 165.

    Article  Google Scholar 

  • Gatouillat, S., Bareggi, A., Vidal-Sallé, E., & Boisse, P. (2013). Meso modelling for composite preform shaping—Simulation of the loss of cohesion of the woven fibre network. Composites Part A Applied Science and Manufacturing, 54, 135–144.

    Article  CAS  Google Scholar 

  • Gereke, T., Döbrich, O., Hübner, M., & Cherif, C. (2013). Experimental and computational composite textile reinforcement forming: A review. Composites: Part A, 46, 1–10.

    Article  CAS  Google Scholar 

  • Guzman-Maldonado, E. (2016). Modelling and simulation of the forming of continuous bre thermoplastics composites. Ph.D. thesis, INSA Lyon France.

    Google Scholar 

  • Guzman-Maldonado, E., Hamila, N., Boisse, P., & Bikard, J. (2015). Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites. Composites Part A Applied Science and Manufacturing, 78, 211–222.

    Article  CAS  Google Scholar 

  • Guzman-Maldonado, E., Hamila, N., Naouar, N., Moulin, G., & Boisse, P. (2016). Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Materials and Design, 93, 431–442.

    Article  CAS  Google Scholar 

  • Guzman-Maldonado, E., Hu, X., Hamila, N., & Boisse, P. (2018). Modélisation du procédé de thermoestampage de composites préimprégnés à matrice thermoplastique. Revue des Composites et des Matériaux Avances, 28(1), 9–33.

    Article  Google Scholar 

  • Hamila, N., & Boisse, P. (2007). A meso–macro three node finite element for draping of textile composite preforms. Applied Composite Materials, 14(4), 235–250.

    Article  CAS  Google Scholar 

  • Hamila, N., Boisse, P., Sabourin, F., & Brunet, M. (2009). A semi-discrete shell finite element for textile composite reinforcement forming simulation. International Journal for Numerical Methods in Engineering, 79(12), 1443–1466.

    Article  Google Scholar 

  • Harrison, P., Clifford, M. J., & Long, A. C. (2004). Shear characterisation of viscous woven textile composites, a comparison between picture frame and bias-extension experiments. Composites Science and Technology, 64, 1453–1465.

    Article  CAS  Google Scholar 

  • Harrison, P., Gomes, R., & Curado-Correia, N. (2013). Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Composites Part A Applied Science and Manufacturing, 54, 56–69.

    Article  CAS  Google Scholar 

  • Hsiao, S. W., & Kikuchi, N. (1999). Numerical analysis and optimal design of composite thermoforming process. Computer Methods in Applied Mechanics and Engineering, 177(1–2), 1–34.

    Google Scholar 

  • ISO. (2011). Reinforcement fabrics—Determination of conventional flexural stiffness—Fixed-angle flexometer method ISO 4604.

    Google Scholar 

  • Kawabata, S. (1980). The standardardization and analysis of hand evaluation. Osaka: The Textile Machinary Society.

    Google Scholar 

  • Khan, M. A. (2009). Numerical and experimental forming analysis of textile composite reinforcements based on a hypoelastic approach. Ph.D. thesis, INSA Lyon France.

    Google Scholar 

  • Khan, M. A., Mabrouki, T., Vidal-Sallé, E., & Boisse, P. (2010). Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. Journal of Materials Processing Technology, 210(2), 378–388.

    Google Scholar 

  • Lahey, T. J., & Heppler, G. R. (2004). Mechanical modeling of fabrics in bending. Journal of Applied Mechanics, 71(1), 32–40.

    Article  Google Scholar 

  • Launay, J., Hivet, G., Duong, A. V., & Boisse, P. (2008). Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Composites Science and Technology, 68, 506–515.

    Article  Google Scholar 

  • Launay, J., Lahmar, F., Boisse, P., & Vacher, P. (2002). Strain measurement in tests on fibre fabric by image correlation method. Advanced Composites Letters, 11(1).

    Google Scholar 

  • Lebrun, G., Bureau, M. N., & Denault, J. (2003). Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Composite Structures, 61(4), 341–352.

    Article  Google Scholar 

  • Lee, J. S., Hong, S. J., Yu, W. R., & Kang, T. J. (2007). The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Composites Science and Technology, 67(3–4), 357–366.

    Article  Google Scholar 

  • Lee, W., Um, M. K., Byun, J. H., Boisse, P., & Cao, J. (2010). Numerical study on thermo-stamping of woven fabric composites based on double-dome stretch forming. International Journal of Material Forming, 3(2), 1217–1227.

    Article  Google Scholar 

  • Liang, B. (2016). Experimental and numerical study of the bending behaviour of textile reinforcements and thermoplastic prepregs. Ph.D. thesis, INSA Lyon France.

    Google Scholar 

  • Liang, B., Chaudet, P., & Boisse, P. (2017). Curvature determination in the bending test of continuous fibre reinforcements. Strain, 53(1), e12213.

    Article  CAS  Google Scholar 

  • Liang, B., Hamila, N., Peillon, M., & Boisse, P. (2014). Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations. Composites Part A Applied Science and Manufacturing, 67, 111–122.

    Article  CAS  Google Scholar 

  • Lin, H., Wang, J., Long, A. C., Clifford, M. J., & Harrison, P. (2007). Predictive modelling for optimization of textile composite forming. Composites Science and Technology, 67(15–16), 3242–3252.

    Article  CAS  Google Scholar 

  • Long, A. C., & Rudd, C. D. (1994). A simulation of reinforcement deformation during the production of preforms for liquid moulding processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 208(4), 269–278.

    Article  Google Scholar 

  • Margossian, A., Bel, S., & Hinterhoelzl, R. (2015). Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mechanical analysis system. Composites Part A Applied Science and Manufacturing, 77, 154–163.

    Article  CAS  Google Scholar 

  • Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., & Boisse, P. (2015). 3D composite reinforcement meso FE analyses based on X-ray computed tomography. Composite Structures, 132, 1094–1104.

    Article  Google Scholar 

  • Onate, E., & Zárate, F. (2000). Rotation-free triangular plate and shell elements. International Journal for Numerical Methods in Engineering, 47(1–3), 557–603.

    Article  Google Scholar 

  • Peirce, F. T. (1930). The “handle” of cloth as a measurable quantity. Journal of the Textile Institute Transactions, 21(9), T377–T416.

    Article  Google Scholar 

  • Peng, X., & Rehman, Z. U. (2011). Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Composites Science and Technology, 71(8), 1075–1081.

    Article  Google Scholar 

  • Pickett, A. K. (2002). Review of finite element simulation methods applied to manufacturing and failure prediction in composites structures. Applied Composite Materials, 9(1), 43–58.

    Article  Google Scholar 

  • Plasfib, Software. (2015). Interdeposit certification. Paris: Agency for the Protection of Programs.

    Google Scholar 

  • Potluri, P., Sharma, S., & Ramgulam, R. (2001). Comprehensive drape modelling for moulding 3D textile preforms. Composites Part A Applied Science and Manufacturing, 32(10), 1415–1424.

    Article  Google Scholar 

  • Potter, K. (2002). Bias extension measurements on cross-plied unidirectional prepreg. Composites Part A Applied Science and Manufacturing, 33(1), 63–73.

    Article  Google Scholar 

  • Prodromou, A. G., & Chen, J. (1997). On the relationship between shear angle and wrinkling of textile composite preforms. Composites Part A Applied Science and Manufacturing, 28(5), 491–503.

    Article  Google Scholar 

  • Rahali, Y., Assidi, M., Goda, I., Zghal, A., & Ganghoffer, J. F. (2016). Computation of the effective mechanical properties including nonclassical moduli of 2.5 D and 3D interlocks by micromechanical approaches. Composites Part B Engineering, 98, 194–212.

    Article  Google Scholar 

  • Rudd, C. D., & Long, A. C. (1997). Liquid molding technologies. Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Sabourin, F., & Brunet, M. (2006). Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Engineering Computations, 23(5), 469–502.

    Article  Google Scholar 

  • Sachs, U., & Akkerman, R. (2017). Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt. Composites Part A Applied Science and Manufacturing, 100, 333–341.

    Article  CAS  Google Scholar 

  • Schnur, D. S., & Zabaras, N. (1992). An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering, 33(10), 2039–2057.

    Article  Google Scholar 

  • Sharma, S. B., Sutcliffe, M. P. F., & Chang, S. H. (2003). Characterisation of material properties for draping of dry woven composite material. Composites Part A Applied Science and Manufacturing, 34(12), 1167–1175.

    Article  CAS  Google Scholar 

  • Simo, J. C. (1987). On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Computer Methods in Applied Mechanics and Engineering, 60(2), 153–173.

    Article  Google Scholar 

  • Ten Thije, R. H. W., Akkerman, R., & Huétink, J. (2007). Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Computer Methods in Applied Mechanics and Engineering, 196(33–34), 3141–3150.

    Article  Google Scholar 

  • Van Der Weeën, F. (1991). Algorithms for draping fabrics on doubly-curved surfaces. International Journal for Numerical Methods in Engineering, 31(7), 1415–1426.

    Article  Google Scholar 

  • Wang, P., Hamila, N., Pineau, P., & Boisse, P. (2012). Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test. Journal of Thermoplastic Composite Materials, 27(5), 679–698.

    Article  CAS  Google Scholar 

  • Willems, A., Lomov, S. V., Vandepitte, D., & Verpoest, I. (2006). Double dome forming simulation of woven textile composites. In 7th International Conference on ESAFORM (pp. 26–28).

    Google Scholar 

  • Willems, A., Lomov, S. V., Verpoest, I., Vandepitte, D., Harrison, P., & Yu, W. R. (2008). Forming simulation of a thermoplastic commingled woven textile on a double dome. International Journal of Material Forming, 1(1), 965–968.

    Article  Google Scholar 

  • Woven Composites Benchmark Forum. (2008). Retrieved from http://www.wovencomposites.org/index.php.

  • Zhu, B., Yu, T. X., Teng, J., & Tao, X. M. (2009). Theoretical modeling of large shear deformation and wrinkling of plain woven composite. Journal of Composite Materials, 43(2), 125–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boisse, P. (2020). Simulation of Continuous Fibre Composite Forming. In: Picu, C., Ganghoffer, JF. (eds) Mechanics of Fibrous Materials and Applications. CISM International Centre for Mechanical Sciences, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-030-23846-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23846-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23845-2

  • Online ISBN: 978-3-030-23846-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics