Skip to main content

Learning and Composing Primitive Skills for Dual-Arm Manipulation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Abstract

In an attempt to confer robots with complex manipulation capabilities, dual-arm anthropomorphic systems have become an important research topic in the robotics community. Most approaches in the literature rely upon a great understanding of the dynamics underlying the system’s behaviour and yet offer limited autonomous generalisation capabilities. To address these limitations, this work proposes a modelisation for dual-arm manipulators based on dynamic movement primitives laying in two orthogonal spaces. The modularity and learning capabilities of this model are leveraged to formulate a novel end-to-end learning-based framework which (i) learns a library of primitive skills from human demonstrations, and (ii) composes such knowledge simultaneously and sequentially to confront novel scenarios. The feasibility of the proposal is evaluated by teaching the iCub humanoid the basic skills to succeed on simulated dual-arm pick-and-place tasks. The results suggest the learning and generalisation capabilities of the proposed framework extend to autonomously conduct undemonstrated dual-arm manipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardón, P., Pairet, È., Petrick, R., Ramamoorthy, S., Lohan, K.S.: Reasoning on grasp-action affordances. In: Konstantinova, J., et al. (eds.) TAROS 2019, LNAI, vol. 11529, pp. 3–15. Springer, Heidelberg (2019)

    Google Scholar 

  2. Ardón, P., Pairet, È., Ramamoorthy, S., Lohan, K.S.: Towards robust grasps: using the environment semantics for robotic object affordances. In: Proceedings of the AAAI Fall Symposium on Reasoning and Learning in Real-World Systems for Long-Term Autonomy, pp. 5–12. AAAI Press (2018)

    Google Scholar 

  3. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  4. Bajcsy, A., Losey, D.P., O’Malley, M.K., Dragan, A.D.: Learning from physical human corrections, one feature at a time. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 141–149. ACM (2018)

    Google Scholar 

  5. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1371–1394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_60

    Chapter  Google Scholar 

  6. Gams, A., Ijspeert, A.J., Schaal, S., Lenarčič, J.: On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton. Robots 27(1), 3–23 (2009)

    Article  Google Scholar 

  7. Gams, A., Nemec, B., Ijspeert, A.J., Ude, A.: Coupling movement primitives: Interaction with the environment and bimanual tasks. IEEE Trans. Robot. 30(4), 816–830 (2014)

    Article  Google Scholar 

  8. Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.: Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In: 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 2587–2592. IEEE (2009)

    Google Scholar 

  9. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: 2002 Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 2, pp. 1398–1403. IEEE (2002)

    Google Scholar 

  11. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 50–56. ACM (2008)

    Google Scholar 

  12. Pairet, È., Ardón, P., Broz, F., Mistry, M., Petillot, Y.: Learning and generalisation of primitives skills towards robust dual-arm manipulation. In: Proceedings of the AAAI Fall Symposium on Reasoning and Learning in Real-World Systems for Long-Term Autonomy, pp. 62–69. AAAI Press (2018)

    Google Scholar 

  13. Pairet, È., Hernández, J.D., Lahijanian, M., Carreras, M.: Uncertainty-based online mapping and motion planning for marine robotics guidance. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2367–2374. IEEE (2018)

    Google Scholar 

  14. Park, D.H., Hoffmann, H., Pastor, P., Schaal, S.: Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: 2008 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, pp. 91–98. IEEE (2008)

    Google Scholar 

  15. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 763–768. IEEE (2009)

    Google Scholar 

  16. Pattacini, U., Nori, F., Natale, L., Metta, G., Sandini, G.: An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1668–1674. IEEE (2010)

    Google Scholar 

  17. Rai, A., Meier, F., Ijspeert, A., Schaal, S.: Learning coupling terms for obstacle avoidance. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 512–518. IEEE (2014)

    Google Scholar 

  18. Smith, C., et al.: Dual arm manipulation: a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  19. Topp, E.A.: Knowledge for synchronized dual-arm robot programming. In: 2017 AAAI Fall Symposium Series. AAAI Press (2017)

    Google Scholar 

  20. Ude, A., Nemec, B., Petrić, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2997–3004. IEEE (2014)

    Google Scholar 

  21. Zöllner, R., Asfour, T., Dillmann, R.: Programming by demonstration: dual-arm manipulation tasks for humanoid robots. In: IROS, pp. 479–484 (2004)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by ORCA Hub EPSRC (EP/R026173/1) and consortium partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Èric Pairet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pairet, È., Ardón, P., Mistry, M., Petillot, Y. (2019). Learning and Composing Primitive Skills for Dual-Arm Manipulation. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics