Skip to main content

Position and Velocity Control for Telemanipulation with Interoperability Protocol

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

In this paper we describe how a generic interoperability telerobotics protocol can be applied for master-slave robotic systems operating in position-position, position-speed and hybrid control modes. The interoperability protocol allows robust and efficient data exchange for teleoperation systems, however it was not shown how it can fit switching position and rate control modes. Here we propose the general framework of hybrid position and rate control modes with interoperability protocol. Furthermore, we demonstrate experimentally that the framework is suitable for robotics teleoperation systems in which a human-operator can switch between position-position and position-speed master and slave robots’ workspace mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://uk.3dsystems.com/haptics-devices/touch.

  2. 2.

    https://cs.stanford.edu/people/conti/omega.html.

  3. 3.

    https://www.haption.com/en/products-en/virtuose-6d-en.html.

References

  1. Bu, W., Liu, G., Liu, C.: Rate-position-point hybrid control mode for teleoperation with force feedback. In: 2016 ICARM, pp. 420–425 (2016)

    Google Scholar 

  2. Chotiprayanakul, P., Liu, D.: Workspace mapping and force control for small haptic device based robot teleoperation. In: 2009 International Conference on Information and Automation, ICIA 2009, pp. 1613–1618. IEEE (2009)

    Google Scholar 

  3. Farkhatdinov, I., Ryu, J.H.: Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot. In: 2007 International Conference on Control, Automation and Systems, ICCAS 2007, pp. 2442–2447. IEEE (2007)

    Google Scholar 

  4. Farkhatdinov, I., Ryu, J.H.: Teleoperation of multi-robot and multi-property systems. In: 2008 6th IEEE International Conference on Industrial Informatics, pp. 1453–1458. IEEE (2008)

    Google Scholar 

  5. Farkhatdinov, I., Ryu, J.H.: Improving mobile robot bilateral teleoperation by introducing variable force feedback gain. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5812–5817. IEEE (2010)

    Google Scholar 

  6. Farkhatdinov, I., Ryu, J.H., Poduraev, J.: Control strategies and feedback information in mobile robot teleoperation. IFAC Proc. Vol. 41(2), 14681–14686 (2008)

    Article  Google Scholar 

  7. Farkhatdinov, I., Ryu, J.H., Poduraev, J.: A user study of command strategies for mobile robot teleoperation. Intell. Serv. Robot. 2(2), 95–104 (2009)

    Article  Google Scholar 

  8. FrankaEmika: ROS integration for Franka Emika research robots. https://github.com/frankaemika/franka_ros

  9. Ghorbanian, A., Rezaei, S., Khoogar, A., Zareinejad, M., Baghestan, K.: A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation. ISA Trans. 52(2), 268–277 (2013)

    Article  Google Scholar 

  10. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  Google Scholar 

  11. Itkowitz, B., Handley, J., Zhu, W.: The OpenHaptics\(^{{\rm TM}}\) toolkit: a library for adding 3D Touch\(^{{\rm TM}}\) navigation and haptics to graphics applications. In: WHC 2005, pp. 590–591 (2005)

    Google Scholar 

  12. King, H.H., et al.: Plugfest 2009: global interoperability in telerobotics and telemedicine. In: ICRA 2010, pp. 1733–1738. IEEE (2010)

    Google Scholar 

  13. Lin, Q., Kuo, C.: On applying virtual reality to underwater robot tele-operation and pilot training. Int. J. Virtual Reality (IJVR) 5(1), 71–91 (2015)

    Google Scholar 

  14. Manocha, K.A., Pernalete, N., Dubey, R.V.: Variable position mapping based assistance in teleoperation for nuclear cleanup. In: 2001 Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 1, pp. 374–379. IEEE (2001)

    Google Scholar 

  15. Namerikawa, T., Kawada, H.: Symmetric impedance matched teleoperation with position tracking. In: 2006 45th IEEE Conference on Decision and Control, pp. 4496–4501. IEEE (2006)

    Google Scholar 

  16. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot Int. J. 31(6), 499–508 (2004)

    Article  Google Scholar 

  17. Park, S., Seo, C., Kim, J.P., Ryu, J.: Robustly stable rate-mode bilateral teleoperation using an energy-bounding approach. Mechatronics 21(1), 176–184 (2011)

    Article  Google Scholar 

  18. Pruks, V., Farkhatdinov, I., Ryu, J.-H.: Preliminary study on real-time interactive virtual fixture generation method for shared teleoperation in unstructured environments. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 648–659. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_55

    Chapter  Google Scholar 

  19. Zinn, M., Khatib, O., Roth, B., Salisbury, J.K.: Large workspace haptic devices-a new actuation approach. In: 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2008, pp. 185–192. IEEE (2008)

    Google Scholar 

Download references

Acknowledgments

This work is funded by the EPSRC NCNR hub EP/R02572X/1 and QMUL-Genova University PhD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bukeikhan Omarali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omarali, B., Palermo, F., Valle, M., Poslad, S., Althoefer, K., Farkhatdinov, I. (2019). Position and Velocity Control for Telemanipulation with Interoperability Protocol. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics