Skip to main content

Designing Origami-Adapted Deployable Modules for Soft Continuum Arms

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks.

This work was partially supported by research awards from the Engineering and Physical Sciences Research Council (EPSRC) under grant agreements EP/R02572X/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanade, T.: A theory of origami world. Artif. Intell. 13(3), 279–311 (1980)

    Article  MathSciNet  Google Scholar 

  2. Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art. AK Peters/CRC Press, Natick (2011)

    Book  Google Scholar 

  3. Dai, J.S., Jones, J.R.: Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 216(10), 959–970 (2002)

    Article  Google Scholar 

  4. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  5. Greenberg, H., Gong, M.L., Magleby, S.P., Howell, L.L.: Identifying links between origami and compliant mechanisms. Mech. Sci. 2(2), 217–225 (2011)

    Article  Google Scholar 

  6. Song, J., Chen, Y., Lu, G.: Axial crushing of thin-walled structures with origami patterns. Thin-Walled Struct. 54, 65–71 (2012)

    Article  Google Scholar 

  7. Ma, J., You, Z.: Energy absorption of thin-walled square tubes with a prefolded origami pattern–part i: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014)

    Article  Google Scholar 

  8. Martinez, R.V., Fish, C.R., Chen, X., Whitesides, G.M.: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22(7), 1376–1384 (2012)

    Article  Google Scholar 

  9. An, S.M., Ryu, J., Cho, M., Cho, K.J.: Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Mater. Struct. 21(5), 055009 (2012)

    Article  Google Scholar 

  10. Zhang, K., Qiu, C., Dai, J.S.: An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3), 031010 (2016)

    Article  Google Scholar 

  11. Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science 345(6197), 644–646 (2014)

    Article  Google Scholar 

  12. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1490–1496. IEEE (2015)

    Google Scholar 

  13. Salerno, M., Zhang, K., Menciassi, A., Dai, J.S.: A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery. IEEE Trans. Robot. 32(3), 484–498 (2016)

    Article  Google Scholar 

  14. Kim, S.J., Lee, D.Y., Jung, G.P., Cho, K.J.: An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robot. 3(16), eaar2915 (2018)

    Article  Google Scholar 

  15. Zhakypov, Z., Paik, J.: Design methodology for constructing multimaterial origami robots and machines. IEEE Trans. Robot. 34(1), 151–165 (2018)

    Article  Google Scholar 

  16. Liu, T., Wang, Y., Lee, K.: Three-dimensional printable origami twisted tower: design, fabrication, and robot embodiment. IEEE Robot. Autom. Lett. 3(1), 116–123 (2018)

    Article  Google Scholar 

  17. Li, S., Vogt, D.M., Rus, D., Wood, R.J.: Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. 114(50), 13132–13137 (2017). https://doi.org/10.1073/pnas.1713450114

    Article  Google Scholar 

  18. Zhang, K., Zhu, Y., Lou, C., Zheng, P., Kovač, M.: A design and fabrication approach for pneumatic soft robotic arms using 3D printed origami skeletons. In: The 2019 IEEE International Conference on Soft Robotics (RoboSoft 2019), pp. 1–7. IEEE (2019)

    Google Scholar 

  19. Guest, S.D., Pellegrino, S.: The folding of triangulated cylinders, part i: geometric considerations. J. Appl. Mech. 61(4), 773–777 (1994)

    Article  Google Scholar 

  20. Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. 138(5), 052301 (2016)

    Article  Google Scholar 

  21. Tachi, T., Miura, K.: Rigid-foldable cylinders and cells. J. Int. Assoc. Shell Spat. Struct. 53(4), 217–226 (2012)

    Google Scholar 

  22. Zirbel, S.A., et al.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013)

    Article  Google Scholar 

  23. Zhang, K., Dai, J.S.: Classification of origami-enabled foldable linkages and emerging applications. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A024. American Society of Mechanical Engineers (2013)

    Google Scholar 

  24. Chen, Y., Feng, H., Ma, J., Peng, R., You, Z.: Symmetric waterbomb origami. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472(2190), 20150846 (2016)

    Article  MathSciNet  Google Scholar 

  25. Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349(6246), 396–400 (2015)

    Article  Google Scholar 

  26. MacCurdy, R., Katzschmann, R., Kim, Y., Rus, D.: Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids, pp. 3878–3885, May 2016. https://doi.org/10.1109/ICRA.2016.7487576

  27. Zhang, K., et al.: Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots. J. Field Robot. https://doi.org/10.1002/rob.21840

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Althoefer, K. (2019). Designing Origami-Adapted Deployable Modules for Soft Continuum Arms. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics