Skip to main content

Light Intensity-Modulated Bending Sensor Fabrication and Performance Test for Shape Sensing

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

Notable advancements in shape sensing for flexible continuum robot arms can be observed. With a keen interest to develop surgical and diagnostic tools that can advance further and further into inaccessible spaces along tortuous pathways, such as the human body, a need for the precise determination of the robot’s pose arises. Whilst there have been techniques developed that use external sensors to observe the advancing robot from the outside to determine its location and orientation in space, there is an observable trend towards using integrated, internal sensors to measure these positional parameters. Especially in the medical world with its tough requirements on robot size, e.g., catheter-type robots, most pose-sensing approaches to date make use of a technique called Fiber Bragg Grating (FBG). FBG sensors make use of fibers that are grated, and the amount of bending can be determined with an appropriate optical interrogator. Although these fiber sensors have been successfully employed to measure the deformation and through advanced signal processing the pose of continuum catheters, they have a major drawback which is their exorbitant cost. To address this issue a different design and fabrication process is proposed to produce an affordable shape sensor that is highly flexible and can detect bending. The method of operation involves a segmented flexible robot arm with three waveguides in a 120-degrees configuration. The segments are made of silicone elastomer with channels that encapsulate light propagating internally, with a photodiode and light-emitting diode (LED) embedded in each individual channel. The prototype was developed and characterized for strain, and bending response detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, C., Luo, X., Fukuda, T.: Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans. Biomed. Eng. PP(99) (2016)

    Google Scholar 

  2. Roesthuis, R.J., Kemp, M., van den Dobbelsteen, J.J.: Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors. IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2013)

    Article  Google Scholar 

  3. Roesthuis, R.J., Janssen, S., Misra, S.: On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo (2013)

    Google Scholar 

  4. Ryu, S.C., Dupont, P.E.: FBG-based shape sensing tubes for continuum robots. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong (2014)

    Google Scholar 

  5. Abayazid, M., Kemp, M., Misra, S.: 3D flexible needle steering in soft-tissue phantoms using fiber Bragg grating sensors. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe (2013)

    Google Scholar 

  6. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  7. Majidi, C.: Soft robotics: a perspective–current trends and prospects for the future. Soft Robot. 1(1), 5–11 (2014)

    Article  Google Scholar 

  8. Park, Y.-L., Majidi, C., Kramer, R., Berard, P., Wood, R.J.: Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)

    Article  Google Scholar 

  9. Park, Y.-L., Chen, B., Wood, R.J.: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12(8), 2711–2718 (2012)

    Article  Google Scholar 

  10. Wu, C.-Y., Liao, W.H., Tung, Y.-C.: Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11(207890), 1740–1746 (2011)

    Article  Google Scholar 

  11. Dickey, M.D., Chiechi, R.C., Larsen, R.J., Weiss, E.A., Weitz, D.A., Whitesides, G.M.: Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Func. Mater. 18, 1097–1104 (2008)

    Article  Google Scholar 

  12. Liu, T., Sen, P., Kim, C.: Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J. Microelectromech. Syst. 21, 443–450 (2012)

    Article  Google Scholar 

  13. Wong, R.P., Posner, J., Santos, V.: Flexible microfluidic normal force sensor skin for tactile feedback. Sens. Actuators A 179, 62–69 (2012)

    Article  Google Scholar 

  14. Vogt, D.M., Park, Y.-L., Wood, R.J.: Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 13(10), 4056–4064 (2013)

    Article  Google Scholar 

  15. Majidi, C., Kramer, R., Wood, R.J.: A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011)

    Article  Google Scholar 

  16. Visser, A., Bridges, N., Rogers, R.: Ionic Liquids: Science and Applications, vol. 1117. American Chemical Society, Washington, D.C. (2012)

    Book  Google Scholar 

  17. Chossat, J.-B., Park, Y.-L., Wood, R.J., Duchaine, V.: A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13(9), 3405–3414 (2013)

    Article  Google Scholar 

  18. Chossat, J.-B., Shin, H.-S., Park, Y.-L., Duchaine, V.: Design and manufacturing of soft tactile skin using an embedded ionic liquid and tomographic imaging. J. Mech. Robot. (2014)

    Google Scholar 

  19. Li, K., Chen, I.-M., Yeo, S.H., Lim, C.K.: Development of finger-motion capturing device based on optical linear encoder. J. Rehabil. Res. Dev. 48(1), 69 (2011)

    Article  Google Scholar 

  20. Kampmann, P., Kirchner, F.: Integration of fiber-optic sensor arrays into a multi-modal tactile sensor processing system for robotic end-effectors. Sensors 14(4), 6854–6876 (2014)

    Article  Google Scholar 

  21. Grillet, A., et al.: Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sens. J. 8(7), 1215–1222 (2008)

    Article  Google Scholar 

  22. Kopetz, S., Cai, D., Rabe, E., Neyer, A.: PDMS-based optical waveguide layer for integration in electrical–optical circuit boards. AEU-Int. J. Electron. Commun. 61(3), 163–167 (2007)

    Article  Google Scholar 

  23. Chang-Yen, D., Eich, R., Gale, B.: A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Lightwave Technol. 23(6), 2088–2093 (2005)

    Article  Google Scholar 

  24. Kee, J.S., Poenar, D.P., Neuzil, P., Yobas, L.: Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators B 134(2), 532–538 (2008)

    Article  Google Scholar 

  25. To, C., Hellebrekers, T.L., Park, Y.-L.: Highly stretchable optical sensors for pressure, strain, and curvature measurement. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg (2015)

    Google Scholar 

  26. Fidanboylu, K.: Fiber optic sensors and their applications (2009)

    Google Scholar 

  27. Méndez, A.: Overview of fiber optic sensors for NDT applications. In: IV NDT Panamerican Conference, pp. 1–11 (2007)

    Google Scholar 

  28. Jones, D., Introduction to Fiber Optics. Naval Education and Training Professional Development and Technology Center (1998)

    Google Scholar 

  29. Jenny, R.: Fundemantals of Fiber Optics: An Introduction for Beginners. Volpi Manufacturing USA Co., New York (2000)

    Google Scholar 

  30. Tracey, P.M.: Intrinsic fiber-optic sensors. IEEE Trans. Ind. Appl. 27, 1 (1991)

    Article  Google Scholar 

  31. Polygerinos, P., Ataollahi, A., Schaeffter, T., Razavi, R., Seneviratne, L.D., Althoefer, K.: MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures. IEEE Trans. Biomed. Eng. 58(3), 721–726 (2011)

    Article  Google Scholar 

  32. Polygerinos, P., Seneviratne, L.D., Althoefer, K.: Modeling of light intensity-modulated fiber-optic displacement sensors. IEEE Trans. Instrum. Meas. 60(4), 1408–1415 (2011)

    Article  Google Scholar 

  33. Puangmali, P., Althoefer, K., Seneviratne, L.D.: Mathematical modeling of intensity-modulated bent-tip optical fiber displacement sensors. IEEE Trans. Intrum. Meas. 59(2), 283–291 (2010)

    Article  Google Scholar 

  34. Fraden, J.: Handbook of Modern Sensors, 3rd edn. Springer, New York (2004)

    Google Scholar 

  35. Kuo, C.H., Dai, J.S.: Robotics for minimally invasive surgery: a historical review. In: Yan, H.S., Ceccarelli, M. (eds.) International Symposium on History of Machines and Mechanisms, pp. 337–354. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9485-9_24

    Chapter  Google Scholar 

  36. Dogangil, G., Davies, B.L., Rodriguez y Baena, F.: A review of medical robotics for minimally invasive soft tissue surgery. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 224(5), 653–679 (2010)

    Article  Google Scholar 

  37. Park, Y.L., Elayaperumal, S., Daniel, B., Ryu, S.C., Shin, M., Savall, J., et al.: Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions. IEEE ASME Trans. Mechatron. 15, 906–915 (2010)

    Google Scholar 

  38. Henken, K., Van Gerwen, D., Dankelman, J., Van Den Dobbelsteen, J.: Accuracy of needle position measurements using fiber Bragg gratings. Minim. Invasive Ther. Allied Technol.: MITAT: Off. J. Soc. Minim. Invasive Ther. 21, 408–414 (2012)

    Article  Google Scholar 

  39. Searle, T.C., Althoefer, K., Seneviratne, L., Liu, H.: An optical curvature sensor for flexible manipulators. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 6–10 May 2013, pp. 4415–4420 (2013)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank each of Eng. Ahmed Al-Kuwari, Mr. Sunith Padinjarayil, and Sara Abazid for their help in 3D-printing, setting up the electrical circuit of the photodiode, and the calibration experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faisal ALJaber or Kaspar Althoefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ALJaber, F., Althoefer, K. (2019). Light Intensity-Modulated Bending Sensor Fabrication and Performance Test for Shape Sensing. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics