Skip to main content

Optimization of Elastic Bodies Subjected to Thermal Loads

  • Chapter
  • First Online:
Stability of Axially Moving Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 259))

  • 381 Accesses

Abstract

In this chapter, we consider three thermoelastic optimization problems. We look at the optimal thickness distribution for a beam of variable thickness, when the goal is to maximize its resistance to thermoelastic buckling, or in other words, to maximize the critical temperature at which buckling occurs. In the second problem, we allow the beam to be constructed inhomogeneously, looking for an optimal distribution of materials that maximizes the critical temperature. The third and final problem concerns heat conduction in locally orthotropic solid bodies. By locally orthotropic, we mean a particular type of inhomogeneity, where the principal directions (axes of orthotropy) may vary as a function of the space coordinates. We derive a guaranteed double-sided estimate for energy dissipation that occurs in heat conduction in a locally orthotropic body, without assuming anything about the material orientation field. This yields guaranteed lower and upper bounds for energy dissipation that always hold regardless of how the local material orientation is distributed in the solid body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albul AV, Banichuk NV, Barsuk AA (1980) Optimization of stability for elastic rods with thermal loads. Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela (MTT), vol 3, pp 127–133 (in Russian)

    Google Scholar 

  2. Banichuk NV, Ivanova SY, Makeev EV, Ragnedda F (2007) Nonlocal optimization of thermoelastic rod made from discrete set of materials with application of genetic algorithm. Probl Strength Plast (69):38

    Article  Google Scholar 

  3. Banichuk NV (1990) Introduction to optimization of structures. Springer, New York, 300 pages

    Chapter  Google Scholar 

  4. Banichuk VV (1983) Problems and methods of optimal structural design. Plenum Press, New York, 313 pages

    Chapter  Google Scholar 

  5. Goldberg DF (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  6. Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization: theory, approximation and computations. SIAM, Philadelphia, PA

    Book  Google Scholar 

  7. Holland JH (1975) Adaptation in neural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  8. Komkov V (1988) Variational principles of continuum mechanics with engineering applications. Vol 1: critical points theory. Reidel Publishing Co., Dordrecht

    Chapter  Google Scholar 

  9. Komkov V (1988) Variational principles of continuum mechanics with engineering applications. Vol. 1: introduction to optimal design theory. Reidel Publishing Co., Dordrecht

    Chapter  Google Scholar 

  10. Landau LD, Lifshitz EM (1970) Teoriya uprugosti (Theory of elasticity, 2nd edn). English 2nd edn. Published by Pergamon Press, Oxford, 1965

    Google Scholar 

  11. Larichev AD (1981) Finding a minimum volume for a beam on an elastic foundation, for a given magnitude of a critical load. In Applied and theoretical research into building structures, Moscow, pp 19–25. Kucherenko TsNIINSK (in Russian)

    Google Scholar 

  12. Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications, New York

    MATH  Google Scholar 

  13. Nowacki W (1970) Teoria sprezystosci. Panstwowe Wydawnictwo Naukowe, Warszawa

    MATH  Google Scholar 

  14. Skutch Rudolf (1897) Uber die Bewegung eines gespannten Fadens, weicher gezwungen ist durch zwei feste Punkte, mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in Transversal-schwingungen von gerlinger Amplitude versetzt wird. Annalen der Physik und Chemie 61:190–195

    Article  Google Scholar 

  15. Timoshenko S (1956) Strength of materials, Part II: advanced theory and problems, 3rd edn. D. Van Nostrand Company

    Google Scholar 

  16. Timoshenko S, Goodier J (1987) Theory of elasticity, 3rd edn. McGraw-Hill

    Google Scholar 

  17. Washizu K (1982) Variational methods in elasticity and plasticity. Pergamon, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Banichuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banichuk, N., Barsuk, A., Jeronen, J., Tuovinen, T., Neittaanmäki, P. (2020). Optimization of Elastic Bodies Subjected to Thermal Loads. In: Stability of Axially Moving Materials. Solid Mechanics and Its Applications, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-23803-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23803-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23802-5

  • Online ISBN: 978-3-030-23803-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics