Skip to main content

Stability in Fluid—Structure Interaction of Axially Moving Materials

  • Chapter
  • First Online:
Stability of Axially Moving Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 259))

  • 410 Accesses

Abstract

This chapter considers fluid—structure interaction problems, where the vibrations of the structure are the main interest, but its motion is affected by the flow of the surrounding medium, such as air or water. We review some basic concepts of fluid mechanics, and then systematically derive a Green’s function based analytical solution of the flow component of a simple fluid—structure interaction problem in two space dimensions. As the structure component in the fluid—structure interaction problem we consider traveling ideal strings and panels. In the numerical results, we examine bifurcations in the natural frequencies of the coupled system, for strings, and for linear elastic and Kelvin-Voigt viscoelastic panels. Whereas the natural frequencies of the traveling ideal string have no bifurcation points, bifurcations appear in the model with fluid—structure interaction whenever there is an axial free-stream flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MB III, Herrera I, Pinder GF (1988) Numerical modeling in science and engineering. Wiley Interscience

    Google Scholar 

  2. Currie IG (2002) Fundamental mechanics of fluids. CRC Press, 3rd edn, 548 p

    Google Scholar 

  3. Anderson JD (1985) Fundamentals of aerodynamics. McGraw-Hill

    Google Scholar 

  4. Sedov LI (1971) A course in continuum mechanics, vol 1. Wolters-Noordhoff Publishing, Groningen, Netherlands, English edition. ISBN 90-0179680-X

    Google Scholar 

  5. Kiselev SP, Vorozhtsov E, Fomin VM (2012) Foundations of fluid mechanics with applications: problem solving using mathematica. Springer, 575 p

    Google Scholar 

  6. Sedov LI (1972) A course in continuum mechanics, vol 3. Wolters-Noordhoff Publishing, Groningen, Netherlands, English edition. ISBN 90-0179682-6

    Google Scholar 

  7. Lighthill (1986) An informal introduction to theoretical fluid mechanics. Oxford Science Publications. ISBN 0-19-853630-5

    Google Scholar 

  8. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press

    Google Scholar 

  9. Lamb H (1932) Hydrodynamics. Dover, 6th edn, 1945

    Google Scholar 

  10. Acheson DJ (1990) Elementary fluid dynamics. Oxford

    Google Scholar 

  11. Vanyo JP (1993) Rotating fluids in engineering and science. Butterworth–Heinemann, 429 p

    Google Scholar 

  12. Verhoff August (2010) Two-dimensional potential flow solutions with separation. J Fluid Mech 657:238–264. https://doi.org/10.1017/S0022112010001448

    Article  MathSciNet  MATH  Google Scholar 

  13. Schlichting H, Gersten K (1999) Boundary layer theory. Springer, 8th revised and enlarged edition. ISBN 978-3-540-66270-9

    Google Scholar 

  14. Schlichting H (1960) Boundary layer theory. McGraw-Hill, 4th edn

    Google Scholar 

  15. Ashley H, Landahl M (1985) Aerodynamics of wings and bodies. Dover

    Google Scholar 

  16. Zeev N (1952) Conformal mapping. Dover. ISBN 0-486-61137-X

    Google Scholar 

  17. Driscoll TA (1996) Algorithm 756: a matlab toolbox for schwarz-christoffel mapping. ACM Trans. Math. Softw. 22(2):168–186, June 1996. ISSN 0098-3500. https://doi.org/10.1145/229473.229475. URL http://doi.acm.org/10.1145/229473.229475

    Article  Google Scholar 

  18. Adams RA, Essex C (2010) Calculus: a complete course. Pearson, 7th edn

    Google Scholar 

  19. Min Chohong, Gibou Frédéric (2006) A second order accurate projection method for the incompressible navier-stokes equations on non-graded adaptive grids. J Comput Phys 219(2):912–929. https://doi.org/10.1016/j.jcp.2006.07.019

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen Han, Min Chohong, Gibou Frédéric (2007) A supra-convergent finite difference scheme for the poisson and heat equations on irregular domains and non-graded adaptive cartesian grids. J Sci Comput 31(1–2):19–60. https://doi.org/10.1007/s10915-006-9122-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Kornecki A, Dowell EH, O’Brien J (1976) On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J Sound Vib 47(2):163–178

    Article  Google Scholar 

  22. Evans LC (1998) Partial differential equations. Am Math Soc. ISBN 0-8218-0772-2

    Google Scholar 

  23. Silverman RA (1972) Introductory complex analysis. Dover. ISBN 0-486-64686-6

    Google Scholar 

  24. Flanigan FJ (1972) Complex variables: harmonic and analytic functions. Dover. ISBN 0-486-61388-7

    Google Scholar 

  25. Sherman DI (1952) On the stress distribution in partitions, an elastic heavy medium which is weakened by elliptic holes. Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk (OTN) 7:992–1010

    Google Scholar 

  26. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2010b) Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J Fluids Struct 26(2):274–291. https://doi.org/10.1016/j.jfluidstructs.2009.09.006

    Article  MATH  Google Scholar 

  27. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2011) Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J Fluids Struct 27(7):986–1005. ISSN 0889-9746. https://doi.org/10.1016/j.jfluidstructs.2011.07.004

    Article  Google Scholar 

  28. Juha Jeronen. On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms. PhD thesis, Department of Mathematical Information Technology, University of Jyväskylä, 2011b. URL http://urn.fi/URN:ISBN:978-951-39-4596-1. Jyväskylä studies in computing 148. ISBN 978-951-39-4595-4 (book), ISBN 978-951-39-4596-1 (PDF)

  29. Banichuk N, Jeronen J, Neittaanmäki P, Saksa T, Tuovinen T (2014) Mechanics of moving materials, volume 207 of Solid mechanics and its applications. Springer. ISBN: 978-3-319-01744-0 (print), 978-3-319-01745-7 (electronic)

    Google Scholar 

  30. Jeronen J, Saksa T, Tuovinen T (2016) Stability of a tensioned axially moving plate subjected to cross-direction potential flow. In Neittaanmäki P, Repin S, Tuovinen T (eds) Mathematical modeling and optimization of complex structures, dedicated to Prof. Nikolay Banichuk for his 70th anniversary, pp 105–116. Springer. ISBN 978-3-319-23563-9

    Google Scholar 

  31. Koivurova H, Salonen E-M (1999) Comments on non-linear formulations for travelling string and beam problems. J Sound Vib 225(5):845–856

    Article  Google Scholar 

  32. Kurki M, Jeronen J, Saksa T, Tuovinen T (2012) Strain field theory for viscoelastic continuous high-speed webs with plane stress behavior. In: Eberhardsteiner J, Böhm HJ, Rammerstorfer FG (eds), CD-ROM Proceedings of the 6th European congress on computational methods in applied sciences and engineering (ECCOMAS 2012), Vienna, Austria. Vienna University of Technology. ISBN 978-3-9502481-9-7

    Google Scholar 

  33. Kurki M, Jeronen J, Saksa T, Tuovinen T (2016) The origin of in-plane stresses in axially moving orthotropic continua. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2015.10.027

    Article  MATH  Google Scholar 

  34. Païdoussis MP (1998) Fluid-structure interactions: slender structures and axial flow, vol 1. Academic Press. ISBN 0-12-544360-9

    Chapter  Google Scholar 

  35. Païdoussis MP (2004) Fluid-structure interactions: slender structures and axial flow, vol 2. Elsevier Academic Press. ISBN 0-12-544361-7

    Google Scholar 

  36. Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct 23(6):904–919

    Article  Google Scholar 

  37. Pramila A (1986) Sheet flutter and the interaction between sheet and air. TAPPI J 69(7):70–74

    Google Scholar 

  38. Frondelius T, Koivurova H, Pramila A (2006) Interaction of an axially moving band and surrounding fluid by boundary layer theory. J Fluids Struct 22(8):1047–1056

    Article  Google Scholar 

  39. Païdoussis MP (2008) The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. J Sound Vib 310:462–492

    Article  Google Scholar 

  40. Pramila A (1987) Natural frequencies of a submerged axially moving band. J Sound Vib 113(1):198–203

    Article  Google Scholar 

  41. Bolotin VV (1963) Nonconservative problems of the theory of elastic stability. Pergamon Press, New York

    MATH  Google Scholar 

  42. Tisseur F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev. 43:235–286

    Article  MathSciNet  Google Scholar 

  43. Niemi J, Pramila A (1986) Vibration analysis of an axially moving membrane immersed into ideal fluid by FEM. Technical report, Tampereen teknillinen korkeakoulu (Tampere University of Technology), Tampere

    Google Scholar 

  44. Pramila A, Niemi J (1987) FEM-analysis of transverse vibrations of an axially moving membrane immersed in ideal fluid. Int J Numer Methods Eng 24(12):2301–2313. https://doi.org/10.1002/nme.1620241205. 1-09702-07

    Article  Google Scholar 

  45. Kulachenko A, Gradin P, Koivurova H (2007a) Modelling the dynamical behaviour of a paper web. Part I. Comput Struct 85:131–147. https://doi.org/10.1016/j.compstruc.2006.09.006

    Article  Google Scholar 

  46. Kulachenko A, Gradin P, Koivurova H (2007b) Modelling the dynamical behaviour of a paper web. Part II. Comput Struct 85:148–157. https://doi.org/10.1016/j.compstruc.2006.09.007

    Article  Google Scholar 

  47. Gresho PM, Sani RL (1999) Incompressible flow and the finite element method: advection–diffusion and isothermal laminar flow. Wiley. Reprinted with corrections. ISBN 0 471 96789 0

    Google Scholar 

  48. Oñate E, Idelsohn SR, del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1(2):267–307. https://doi.org/10.1142/S0219876204000204

    Article  MATH  Google Scholar 

  49. Ponthot J-P, Belytschko T (1998) Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput Methods Appl Mech Eng 152(1–2):19–46. https://doi.org/10.1016/S0045-7825(97)00180-1

    Article  MATH  Google Scholar 

  50. Idelsohn SR, Oñate E, del Pin F (2003) A lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput Struct 81(8–11):655–671. https://doi.org/10.1016/S0045-7949(02)00477-7

    Article  Google Scholar 

  51. Landau LD, Lifshitz EM (1959) Fluid mechanics. English 2nd ed. published by Butterworth–Heinemann, 1987, Oxford, 2nd edn

    Google Scholar 

  52. Tokaty GA, History A (1994) Philosophy of fluid mechanics. Dover (1994) Republication with corrections. Original by G. T. Foulis & Co., Ltd, p 1971

    Google Scholar 

  53. Hoffman Johan, Johnson Claes (2010) Resolution of d’Alembert’s paradox. J Math Fluid Mech 12(3):321–334. https://doi.org/10.1007/s00021-008-0290-1

    Article  MathSciNet  MATH  Google Scholar 

  54. Hoffman Johan, Johnson Claes (2008) Blow up of incompressible Euler solutions. BIT Numer Math 48(2):285–307. https://doi.org/10.1007/s10543-008-0184-x

    Article  MathSciNet  MATH  Google Scholar 

  55. McKee S, Tomé MF, Ferreira VG, Cuminato JA, Castelo A, Sousa FS, Mangiavacchi N (2008) The MAC method. Comput Fluids 37:907–930. https://doi.org/10.1016/j.compfluid.2007.10.006

    Article  MathSciNet  MATH  Google Scholar 

  56. Cline D, Cardon D, Egbert PK (2013) Fluid flow for the rest of us: tutorial of the marker and cell method in computer graphics. Technical report, Brigham Young University

    Google Scholar 

  57. Gueyffier D, Li J, Nadim A, Scardovelli S, Zaleski S (1999) Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152:423–456. https://doi.org/10.1006/jcph.1998.6168

    Article  MATH  Google Scholar 

  58. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182–2189. https://doi.org/10.1063/1.1761178

    Article  MathSciNet  Google Scholar 

  59. Noh WF, Woodward P (1976) Proceedings of the fifth international conference on numerical methods in fluid dynamics June 28–July 2. Twente University, Enschede chapter SLIC (Simple Line Interface Calculation). Springer, , pp 330–340. ISBN 978-3-540-37548-7. https://doi.org/10.1007/3-540-08004-X_336

    Chapter  Google Scholar 

  60. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  61. Bisplinghoff RL, Ashley H (1975) Principles of aeroelasticity. Dover Publications, Inc., New York, 1962. 2nd edn

    Google Scholar 

  62. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz H-J, Schäfer M (eds) Fluid–structure interaction—modelling, simulation, optimisation, vol 53 of Lecture Notes in Computational Science and Engineering, pp 371–385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_15. ISBN 978-3-540-34595-4

  63. Lighthill MJ (1960) Note on the swimming of slender fish. J Fluid Mech 9:305–317

    Article  MathSciNet  Google Scholar 

  64. Païdoussis MP (2005) Some unresolved issues in fluid-structure interactions. J Fluids Struct 20(6):871–890

    Article  Google Scholar 

  65. Holzapfel GA (2000) Nonlinear solid mechanics—a continuum approach for engineering. Wiley

    Google Scholar 

  66. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Dover

    Google Scholar 

  67. Strang WG, Fix GJ (1973) An analysis of the finite element method. Wellesley Cambridge Press. ISBN 978-0961408886

    Google Scholar 

  68. Ciarlet PG (1978) The finite element method for elliptic problems. Studies in Mathematics and its Applications. North-Holland, Amsterdam

    Chapter  Google Scholar 

  69. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press. Reprint by Dover, 2009

    Google Scholar 

  70. Krizek M, Neittaanmäki P (1990) Approximation finite element, of variational problems and applications. Longman Scientific & Technical, Harlow. Copubl. Wiley, New York

    Google Scholar 

  71. Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Studentlitteratur, Lund. ISBN 91-44-49311-8

    Google Scholar 

  72. Klaus-Jürgen B (1996) Finite element procedures. Prentice Hall. ISBN 0-13-301458-4

    Google Scholar 

  73. Hughes TJR (2000) The finite element method. Linear Static and Dynamic Finite Element Analysis. Dover Publications Inc, Mineola, N.Y., USA. ISBN 0-486-41181-8

    Google Scholar 

  74. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley. ISBN 978-0-471-98774-1

    Google Scholar 

  75. Jacob F, Ted B (2007) A first course in finite elements. Wiley. ISBN 978-0-470-03580-1

    Google Scholar 

  76. Brenner SC, Scott LR (2010) The mathematical theory of finite element methods, vol 15 of Texts in Applied Mathematics. Springer, 3rd edn

    Google Scholar 

  77. Zienkiewicz OC, Taylor RL, Zhu JZ (2013a) The finite element method: its basis and fundamentals, vol 1. Butterworth–Heinemann, 7th edn

    Google Scholar 

  78. Zienkiewicz OC, Taylor RL, Fox DD (2013b) The finite element method for solid and structural mechanics, vol 2. Butterworth–Heinemann, 7th edn, 2013a

    Google Scholar 

  79. Zienkiewicz OC, Taylor RL, Nithiarasu P (2013c) The finite element method for fluid dynamics, vol 3. Butterworth–Heinemann, 7th edn

    Google Scholar 

  80. Jean D, Antonio H (2003) Finite element methods for flow problems. Wiley. ISBN 0-471-49666-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Banichuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banichuk, N., Barsuk, A., Jeronen, J., Tuovinen, T., Neittaanmäki, P. (2020). Stability in Fluid—Structure Interaction of Axially Moving Materials. In: Stability of Axially Moving Materials. Solid Mechanics and Its Applications, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-23803-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23803-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23802-5

  • Online ISBN: 978-3-030-23803-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics