Skip to main content

Functional Thermal Imaging of Skin Tissue Using the Discrete Thermal Time Constants Spectrum

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1011))

Included in the following conference series:

  • 533 Accesses

Abstract

In this paper we present functional thermal imaging using InfraRed (IR) thermography to measure temperature rise in a skin tissue in transient state after weak cooling. Skin tissue is the multilayer complex biological structure. It can be modelled using thermal-electrical analogy by Foster and/or Cauer networks consisting of thermal resistances and capacitances \(R_{th}-C_{th}\). The proposed methodology allows identifying thermal time constants of a multilayer biomedical structure. The distributions of parameters used for approximation temperature evolution at the upper surface of the skin tissue with psoriasis are presented. They correlate with the inflammation areas of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Büttner, W.: Ein numerisches verfahren zur exponentialapproximation von transienten wärmewiderständennumerical exponential approximation of transient thermal impedances. Archiv Elektrotech. 59(6), 351–359 (1977)

    Article  Google Scholar 

  2. Chatziathanasiou, V., Chatzipanagiotou, P., Papagiannopoulos, I., De Mey, G., Więcek, B.: Dynamic thermal analysis of underground medium power cables using thermal impedance, time constant distribution and structure function. Appl. Thermal Eng. 60(1–2), 256–260 (2013)

    Article  Google Scholar 

  3. Chatzipanagiotou, P., Chatziathanasiou, V., De Mey, G., Więcek, B.: Influence of soil humidity on the thermal impedance, time constant and structure function of underground cables: a laboratory experiment. Appl. Thermal Eng. 113, 1444–1451 (2017)

    Article  Google Scholar 

  4. Chatzipanagiotou, P., Strąkowska, M., De Mey, G., Chatziathanasiou, V., Więcek, B., Kopeć, M.: A new software tool for transient thermal analysis based on fast IR camera temperature measurement. Measur. Autom. Monit. 63 (2017)

    Google Scholar 

  5. Organizing committee of the conference QIRT 2018. In: Berlin, G. (ed.) Proceedings of 14th Quantitative InfraRed Thermography Conference, QIRT Council (2018)

    Google Scholar 

  6. Corporation, M.G.: T3Ster-Master Thermal Evaluation Tool. Mentor Graphics Corporation, The address of the publisher. Version 2.2

    Google Scholar 

  7. Drmac, Z., Gugercin, S., Beattie, C.: Quadrature-based vector fitting for discretized H\(_2\) approximation. SIAM J. Sci. Comput. 37(2), A625–A652 (2015)

    Google Scholar 

  8. Garnier, H., Mensler, M., Richard, A.: Continuous-time model identification from sampled data: implementation issues and performance evaluation. Int. J. Control 76(13), 1337–1357 (2003)

    Article  MathSciNet  Google Scholar 

  9. Górecki, K., Rogalska, M., Zarębski, J.: Parameter estimation of the electrothermal model of the ferromagnetic core. Microelectron. Reliab. 54(5), 978–984 (2014)

    Article  Google Scholar 

  10. Gorecki, K., Zarebski, J.: The influence of the selected factors on transient thermal impedance of semiconductor devices. In: 2014 Proceedings of the 21st International Conference on Mixed Design of Integrated Circuits & Systems (MIXDES), pp. 309–314. IEEE (2014)

    Google Scholar 

  11. Hellen, E.H.: Padé-laplace analysis of signal averaged voltage decays obtained from a simple circuit. Am. J. Phys. 73(9), 871–875 (2005)

    Article  MathSciNet  Google Scholar 

  12. Herman, C.: The role of dynamic infrared imaging in melanoma diagnosis. Expert Rev. Dermatol. 8(2), 177–184 (2013)

    Article  Google Scholar 

  13. Jakopovid, Z., Bencic, Z., Koncar, R.: Identification of thermal equivalent-circuit parameters for semiconductors. In: 1990 IEEE Workshop on Computers in Power Electronics, pp. 251–260. IEEE (1990)

    Google Scholar 

  14. Jakubowska, T., Wiecek, B., Wysocki, M., Drews-Peszynski, C., Strzelecki, M.: Classification of breast thermal images using artificial neural networks. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 1155–1158. IEEE (2004)

    Google Scholar 

  15. Jibia, A.U., Salami, M.J.E.: An appraisal of gardner transform-based methods of transient multiexponential signal analysis. Int. J. Comput. Theory Eng. 4(1), 16 (2012)

    Article  Google Scholar 

  16. Kaczmarek, M.: A new diagnostic ir-thermal imaging method for evaluation of cardiosurgery procedures. Biocybern. Biomed. Eng. 36(2), 344–354 (2016)

    Article  Google Scholar 

  17. Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestruct. Eval. 35(1), 19 (2016)

    Article  Google Scholar 

  18. Kałuża, M., Więcek, B., De Mey, G., Hatzopoulos, A., Chatziathanasiou, V.: Thermal impedance measurement of integrated inductors on bulk silicon substrate. Microelectron. Reliab. 73, 54–59 (2017)

    Article  Google Scholar 

  19. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ljung, L.: Experiments with Identification of Continuous Time Models. Linköping University Electronic Press (2009)

    Google Scholar 

  21. Marco, S., Palacín, J., Samitier, J.: Improved multiexponential transient spectroscopy by iterative deconvolution. IEEE Trans. Instrum. Measur. 50(3), 774–780 (2001)

    Article  Google Scholar 

  22. Mathworks: Transfer function estimation (tfest) help. https://nl.mathworks.com/help/ident/ref/tfest.html. Accessed 01 April 2019

  23. Murthy, K., Bedford, R.: Transformation between Foster and Cauer equivalent networks. IEEE Trans. Circ. Syst. 25(4), 238–239 (1978)

    Article  Google Scholar 

  24. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  25. Nowakowski, A., Kaczmarek, M.: Active dynamic thermography-problems of implementation in medical diagnostics. Quant. InfraRed Thermogr. J. 8(1), 89–106 (2011)

    Article  Google Scholar 

  26. Ozdemir, A.A., Gumussoy, S.: Transfer function estimation in system identification toolbox via vector fitting. IFAC-PapersOnLine 50(1), 6232–6237 (2017)

    Article  Google Scholar 

  27. Protonotarios, E., Wing, O.: Theory of nonuniform rc lines, part i: analytic properties and realizability conditions in the frequency domain. IEEE Trans. Circ. Theory 14(1), 2–12 (1967)

    Article  Google Scholar 

  28. Russo, S.: Measurement and simulation of electrothermal effects in solid-state devices for RF applications. Ph.D. thesis, Università degli Studi di Napoli Federico II (2010)

    Google Scholar 

  29. Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  30. Strąkowska, M., Strąkowski, R., Strzelecki, M., De Mey, G., Więcek, B.: Thermal modelling and screening method for skin pathologies using active thermography. Biocybern. Biomed. Eng. 38(3), 602–610 (2018)

    Article  Google Scholar 

  31. Strąkowska, M., Chatzipanagiotou, P., De Mey, G., Chatziathanasiou, V., Więcek, B.: Novel software for medical and technical thermal object identification (TOI) using dynamic temperature measurements by fast IR cameras. In: Organizing Committee of the Conference QIRT 2018, pp. 531–538 (Berlin [5]). https://doi.org/10.21611/qirt.2018.053

  32. Strąkowska, M., De Mey, G., Więcek, B., Strzelecki, M.: A three layer model for the thermal impedance of the human skin: modeling and experimental measurements. J. Mech. Med. Biol. 15(04), 1550,044 (2015)

    Google Scholar 

  33. Strąkowska, M., Strzelecki, M., Więcek, B.: Thermal modelling and thermography measurements of thermoregulation effects in a skin tissue. In: Organizing Committee of the Conference QIRT 2018, pp. 430–435. (Berlin [5]). https://doi.org/10.21611/qirt.2018.034

  34. Székely, V.: On the representation of infinite-length distributed rc one-ports. IEEE Trans. Circ. Syst. 38(7), 711–719 (1991)

    Article  Google Scholar 

  35. Szekely, V.: Identification of RC networks by deconvolution: chances and limits. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 45(3), 244–258 (1998)

    Article  MathSciNet  Google Scholar 

  36. Vermeersch, B.: Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effects. Ph.D. thesis, Ghent University. Faculty of Engineering (2009)

    Google Scholar 

  37. Young, P., Jakeman, A.: Refined instrumental variable methods of recursive time-series analysis part iii. extensions. Int. J. Control 31(4), 741–764 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Strąkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strąkowska, M., Strąkowski, R., Strzelecki, M. (2019). Functional Thermal Imaging of Skin Tissue Using the Discrete Thermal Time Constants Spectrum. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_1

Download citation

Publish with us

Policies and ethics