Skip to main content

Power Quality Issues and Mitigation Techniques in Microgrid

  • Chapter
  • First Online:
Microgrid Architectures, Control and Protection Methods

Part of the book series: Power Systems ((POWSYS))

Abstract

The most desirable characteristics of today’s power system with distributed energy resources (DER) forming the microgrid is the reliability of the power supply and immunity to various power quality(PQ) issues. It is important to examine PQ issues arising from the introduction of DER and behavior of microgrid with penetration of various loads. In this chapter, reader is introduced to major power quality issues in the microgrid. A number of solutions to tackle these issues and their operating principle are also explained. In addition to the conventional power quality issues, load pulses are frequently encountered and need to be tackled with great care in microgrid. Hence, the hybridization of Energy Storage System (ESS) with different power storage devices such as the ultracapacitors (UCs), Superconducting Magnetic Energy Storage (SMES) devices, and high speed Flywheel Energy Systems (FESs) is proposed to dynamically compensate the power flow balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Planas, J. Andreu, J.I. Garate, I. Martinez de Alegria, E. Ibarra, AC and DC technology in microgrids: a review. Renew. Sustain. Energy Rev. 43, 726–749 (2015)

    Article  Google Scholar 

  2. J.J. Justo, F. Mwasilu, J. Lee, J.W. Jung, AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renew. Sustain. Energy Rev. 24, 387–405 (2013)

    Article  Google Scholar 

  3. D. Kumar, F. Zare, A. Ghosh, DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5, 12230–12256 (2017)

    Article  Google Scholar 

  4. N. Mahdavi Tabatabaei, A. Jafari Aghbolaghi, N. Bizon, F. Blaabjerg, Reactive Power Control in AC Power Systems (Cham, Switzerland, Springer International Publishing, 2017)

    Google Scholar 

  5. P. Aristidou, G. Valverde, T.V. Cutsem, Contribution of distribution network control to voltage stability: a case study. IEEE Trans. on Smart Grid 8(1), 106–116 (2017)

    Article  Google Scholar 

  6. M.T.L. Gayatri, A.M. Parimi, A.V. Pavan Kumar, A review of reactive power compensation techniques in microgrids. Renew. Sustain. Energ. Rev. 81, 1030–1036 (2018)

    Article  Google Scholar 

  7. R. Gundabathini, N.M. Pindoriya, Improved control strategy for bidirectional single phase AC-DC converter in hybrid AC/DC microgrid. Electr. Power Compon. Syst. 45(20), 2293–2303 (2017)

    Article  Google Scholar 

  8. B. Singh, S. Singh, A. Chandra, K. Al Haddad, Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation. IEEE Trans. Ind. Inf. 7(4), 540–556 (2011)

    Article  Google Scholar 

  9. F. Zare, H. Soltani, D. Kumar, P. Davari, H.A.M. Delpino, F. Blaabjerg, Harmonic emissions of three-phase diode rectifiers in distribution networks. IEEE Access 5, 2819–2833 (2017)

    Article  Google Scholar 

  10. M.B. Latran, A. Teke, Y. Yoldas, Mitigation of power quality problems using distribution static synchronous compensator: a comprehensive review. IET Power Electron. 8(7), 1312–1328 (2015)

    Article  Google Scholar 

  11. S.R. Arya, B. Singh, A. Chandra, K. Al Haddad, Power Factor Correction and Zero Voltage Regulation in Distribution System Using DSTATCOM, in IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16–19 Dec 2012

    Google Scholar 

  12. Z. Li, W. Li, T. Pan, An optimized compensation strategy of DVR for micro-grid voltage sag. Prot. Control Mod. Power Syst. 1(1), 10 (2016)

    Article  Google Scholar 

  13. V. Khadkikar, Enhancing electric power quality using UPQC: a comprehensive overview. IEEE Trans. Power Electron. 27, 2284–2297 (2012)

    Article  Google Scholar 

  14. H. Hafezi, G. D’Antona, A. Dede, D.D. Giustina, R. Faranda, G. Massa, Power quality conditioning in LV distribution networks: results by field demonstration. IEEE Trans. Smart Grid 8(1), 418–427 (2017)

    Article  Google Scholar 

  15. J. He, B. Liang, Y.W. Li, C. Wang, Simultaneous microgrid voltage and current harmonics compensation using coordinated control of dual-interfacing converters. IEEE Trans. Power Electron. 32(4), 2647–2660 (2017)

    Article  Google Scholar 

  16. W. Al Saedi, S.W. Lachowicz, D. Habibi, O. Bass, Power flow control in grid-connected microgrid operation using particle swarm optimization under variable load conditions. Int. J. Electr. Power Energ. Syst. 49, 76–85 (2013)

    Article  Google Scholar 

  17. P. Gopakumar, M.J.B. Reddy, D.K. Mohanta, Stability concerns in smart grid with emerging renewable energy technologies. Electr. Power Compon. Syst. 42(3–4), 418–425 (2014)

    Article  Google Scholar 

  18. Y. Liu, Y. Li, Y. Chi, W. Wang, Analysis on a Large Scale Wind Turbines Cascading Trip-off Accident in North China, in IEEE Grenoble Conference, 16–20 June 2013 (2013), pp. 1–6

    Google Scholar 

  19. E. Taylor, M. Korytowski, G. Reed, Voltage transient propagation in AC and DC datacenter distribution architectures, in IEEE Energy Conversion Congress and Exposition (ECCE) (September 2012), pp. 15–20

    Google Scholar 

  20. A.D. Graham, AD The Importance of a DC Side Harmonic Study for a DC Distribution System, in 6th IET International Conference on Power Electronics, Machines and Drives (PEMD), 27–29 Mar 2012

    Google Scholar 

  21. A. Kwasinski, Advanced Power Electronics Enabled Distribution Architectures: Design, Operation, and Control, in 8th International Conference on Power Electronics (ECCE Asia), 30 May–3 June 2011

    Google Scholar 

  22. V. Rajagopal, B. Singh, G.K. Kasal, Electronic load controller with power quality improvement of isolated induction generator for small hydro power generation. IET Renew. Power Gener. 5(2), 202–213 (2010)

    Article  Google Scholar 

  23. T. Trivedi, R. Jadeja, P. Bhatt, Improved direct power control of shunt active power filter with minimum reactive power variation and minimum apparent power variation approaches. J. Electr. Eng. Technol. 12(3), 1124–1136 (2017)

    Article  Google Scholar 

  24. P.G. Khorasani, M. Joorabian, S.G. Seifossadat, Smart grid realization with introducing unified power quality conditioner integrated with DC microgrid. Electr. Power Syst. Res. 151, 68–85 (2017)

    Article  Google Scholar 

  25. N. Bizon, Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system. Appl. Energy 229, 459–473 (2018)

    Article  Google Scholar 

  26. C. Turpin, B. Morin, E. Bru, O. Rallieres, X. Roboam, B. Sareni, M.G. Arregui, N. Roux, Power for aircraft emergencies: a hybrid proton-exchange membrane H2\/O2 fuel cell and ultracapacitor system. IEEE Electrification Mag. 5(4), 72–85 (2017)

    Article  Google Scholar 

  27. N. Bizon, Real-time optimization strategy for fuel cell hybrid power sources with load-following control of the fuel or air flow. Energy Convers. Manag. 157, 13–27 (2018)

    Article  Google Scholar 

  28. N. Bizon, P. Thounthong, Fuel economy using the global optimization of the Fuel Cell Hybrid Power Systems. Energy Convers. Manag. 173, 665–678 (2018)

    Article  Google Scholar 

  29. Hydro-Quebec and the MathWorks I, Sim Power Systems Reference (Mathworks Inc, 2010)

    Google Scholar 

  30. J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng, Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design (Springer Science & Business Media, 2004)

    Google Scholar 

  31. N. Bizon, A.G. Mazare, L.M. Ionescu, F.M. Enescu, Optimization of the proton exchange membrane fuel cell hybrid power system for residential buildings. Energy Convers. Manag. 163, 22–37 (2018)

    Article  Google Scholar 

  32. N. Bizon, Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load. Appl. Energ. 212, 196–209 (2018)

    Article  Google Scholar 

  33. N. Bizon, A new topology of fuel cell hybrid power source for efficient operation and high reliability. J. Power Sources 196(6), 3260–3270 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendrasinh Jadeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadeja, R., Bizon, N., Trivedi, T., Ved, A., Chudasama, M. (2020). Power Quality Issues and Mitigation Techniques in Microgrid. In: Mahdavi Tabatabaei, N., Kabalci, E., Bizon, N. (eds) Microgrid Architectures, Control and Protection Methods. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-23723-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23723-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23722-6

  • Online ISBN: 978-3-030-23723-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics