Skip to main content

DC Microgrid Control

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

The current challenges of the current power system are to face-up with the integration of the increased renewable energy sources, energy storage systems, access to the energy market in an optimal manner, reconfiguration under faults using microgrid concept, being capable to assure more flexibility, and stability, through advanced control. The chapter makes a modern introduction into the DC microgrid architectures and their control. As the most used control into the DC microgrids, the hierarchical control is presented. In order to guide the readers, the most used standards related to DC microgrids are presented. As case study, the advanced control of the utility converter has been developed and simulated in Matlab/Simulink. Nowadays, the security protection of the energy network is a concern. An introduction to cyber-physical system (CPS) related to the power system field is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Werth, A. Andre, D. Kawamoto, T. Morita, S. Tajima, M. Tokoro, D. Yanagidaira, K. Tanaka, Peer-to-peer control system for DC microgrids. IEEE Trans. Smart Grid 9(4), 3667–3675 (2018)

    Article  Google Scholar 

  2. Z. Wang, F. Liu, Y. Chen, S. Low, S. Mei, Breaking diversity restriction: distributed optimal control of stand-alone DC microgrids (2017), https://arxiv.org/abs/1706.02695. Accessed 2018

  3. D. Wu, F. Tang, J.C. Vasquez, J.M. Guerrero, Control and analysis of droop and reverse droop controllers for distributed generations, in IEEE 11th International Multiconference on Systems, Signals & Devices, SDD (2014)

    Google Scholar 

  4. F. Valenciaga, P.F. Puleston, Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy. IEEE Trans. Energy Convers. 20(2), 398–405 (2005)

    Article  Google Scholar 

  5. H. Pourbabak, T. Chen, B. Zhang, W. Su, Control and energy management system in microgrids. Institution of Engineering and Technology (IET) (2017), http://digital-library.theiet.org/content/books/10.1049/pbpo090e_ch3. Accessed 2018

  6. R. Hidalgo Leon, C. Sanchez Zurita, P. Jacome Ruiz, J. Wu, Y. Munoz Jadan, Roles, challenges, and approaches of droop control methods for microgrids, in IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Quito, Ecuador (2017)

    Google Scholar 

  7. T. Dragicevic, X. Lu, J.C.V. Quintero, J.M. Guerrero, DC microgrids—Part I: A review of control strategies and stabilization techniques. IEEE Trans. Power Electron. 31(7), 4876–4891 (2016)

    Google Scholar 

  8. Q. Shafiee, T. Dragicevic, F. Andrade, J.C. Vasquez, J.M. Guerrero, Distributed consensus-based control of multiple DC-microgrids clusters, in Annual Conference of the IEEE Industrial Electronics Society (2014), pp. 2056–2062

    Google Scholar 

  9. L. Meng, T. Dragicevic, J.M. Guerrero, J.C. Vasquez, Dynamic consensus algorithm based distributed global efficiency optimization of a droop controlled DC microgrid, in IEEE International Energy Conference (2014)

    Google Scholar 

  10. X. Lu, K. Sun, J.M. Guerrero, J.C. Vasquez, L. Huang, Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids. IEEE Trans. Smart Grid 6(1), 147–157 (2015)

    Article  Google Scholar 

  11. https://blog.482.solutions/distributed-ledger-technology-and-its-types-ad76565ae76. Accessed 2018

  12. T.L. Vandoorn, J.C. Vasquez, D.M. de Kooning, J.M. Guerrero, L. Vandevelde, Microgrids: hierarchical control and an overview of the control and reserve management strategies. IEEE Ind. Electron. Mag. 7(4), 42–55 (2013)

    Article  Google Scholar 

  13. Z. Wang, F. Liu, Y. Chen, S.H. Low, S. Mei, Unified distributed control of standalone DC microgrids. IEEE Trans Smart Grid (2017)

    Google Scholar 

  14. J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  15. Q.C. Zhong, Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60(4), 1281–1290 (2013)

    Article  Google Scholar 

  16. H. Kakigano, Y. Miura, T. Ise, Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique. IEEE Trans. Power Electron. 28(5), 246–2258 (2013)

    Article  Google Scholar 

  17. R.S. Balog, P.T. Krein, Bus selection in multibus DC microgrids. IEEE Trans. Power Electron. 26(3), 860–867 (2011)

    Article  Google Scholar 

  18. M. Majid Gulzar, S. Tahir Hussain Rizvi, M. Yaqoob Javed, U. Munir, H. Asif, Multi-agent cooperative control consensus: a comparative review. Electronics 7(22) (2018)

    Article  Google Scholar 

  19. K. de Brabandere, B. Bolsens, J. den Keybus, A. Woyte, J. Driesen, R. Belmans, A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107–1115 (2007)

    Article  Google Scholar 

  20. Z. Yan, D. Wu, Y. Liu, Consensus of discrete multiagent system with various time delays and environmental disturbances. Entropy 16, 6524–6538 (2014)

    Article  MathSciNet  Google Scholar 

  21. S.G. Anand, B. Fernandes, J.M. Guerrero, Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron. 28(4), 1900–1913 (2013)

    Article  Google Scholar 

  22. S. Moayedi, A. Davoudi, Distributed tertiary control of DC microgrid clusters. IEEE Trans. Power Electron. 31(2), 1–10 (2015)

    Google Scholar 

  23. G. Chen, E. Feng, Distributed secondary control and optimal power sharing in microgrids. IEEE/CAA J. Autom Sin 2(3) (2015)

    Google Scholar 

  24. B. Kroposki, T.S. Basso, R. Deblasio, Microgrid standards and technologies, in IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century (2008)

    Google Scholar 

  25. P2030 TM Smart Grid Interoperability Series of Standards. https://www.nrel.gov/docs/fy12osti/53028.pdf

  26. M. Gaiceanu, Integral state feedback control of grid power inverter. Buletinul AGIR (3/2012)

    Google Scholar 

  27. F. Profumo, R.Uhrin, Complete state feedback control of quasi direct AC/AC converter, in IEEE Industry Applications Conference, Thirty-First IAS Annual Meeting (IAS-96) (1996)

    Google Scholar 

  28. M. Gaiceanu, Advanced State Feedback Control of Grid- Power Inverter. Energy Procedia 14, 1464–1470 (2012)

    Article  Google Scholar 

  29. M. Gaiceanu, C. Nichita, S. Statescu, Photovoltaic power conversion system as a reserve power source to a modern elevator, in 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015). Springer Proceedings in Energy, Springer

    Google Scholar 

  30. S. Sridhar et al., Security of cyber-physical systems for the power grid. IEEE Process. 100(1) (2012)

    Google Scholar 

  31. A modern network view system. National Energy Technology Laboratory (NETL), US Department of Energy (DOE) (2007)

    Google Scholar 

  32. NISTIR 7628, Guidelines for Intelligent Network Security. National Institute for Standards and Technology, August (2010)

    Google Scholar 

  33. GAO-11-117, Upgrading the Electricity Network: Progress has been made on the IT security guidelines, but key challenges remain to be addressed. US Government Accountability Office (GAO), January (2011)

    Google Scholar 

  34. D. Callaway, I. Hiskens, B who performs controllability of electrical loads. Proc. IEEE 99(1), 184–199 (2011)

    Article  Google Scholar 

  35. https://energy.sandia.gov/energy/ssrei/gridmod/integrated-research-and-development/esdm/. Accessed 2018

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-1680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Gaiceanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaiceanu, M., Arama, I.N., Ghenea, I. (2020). DC Microgrid Control. In: Mahdavi Tabatabaei, N., Kabalci, E., Bizon, N. (eds) Microgrid Architectures, Control and Protection Methods. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-23723-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23723-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23722-6

  • Online ISBN: 978-3-030-23723-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics