Skip to main content

Biological Foundations of Linguistic Cognition

  • Chapter
  • First Online:

Abstract

This chapter attempts to show that the biological foundations of language and language-cognition relations are rife with conundrums that are far deeper than is generally assumed among most researchers who delve into the connections obtaining between our biological infrastructure and linguistic cognition. First, this chapter looks into the ways in which the genetic foundations of language and cognition can be thought to shed light on the nature of linguistic cognition. Careful scrutiny of the arguments and the underlying methodology reveals perplexing problems hidden inside. Then, the standard methods of neurobiological investigations into language structure and its processing such as brain imaging studies, lesion studies, and neurological disorders of language are examined to figure out how and in what ways the logical texture of linguistic cognition can be said to be neurobiologically instantiated. Finally, an outline of a positive relationship between linguistic cognition and neurobiology is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, M. L. (2014). After Phrenology: Neural Reuse and the Interactive Brain. Cambridge: MIT Press.

    Book  Google Scholar 

  • Baggio, G. (2018). Meaning in the Brain. Cambridge: MIT Press.

    Google Scholar 

  • Baggio, G., van Lambalgen, M., & Hagoort, P. (2014). Logic as Marr’s computational level: Four case studies. Topics in Cognitive Science, 7, 1–12.

    Google Scholar 

  • Balaban, E. (2006). Cognitive developmental biology: History, process and fortune’s wheel. Cognition, 101(2), 298–332.

    Article  Google Scholar 

  • Basso, A. (2003). Aphasia and Its Theory. New York: Oxford University Press.

    Google Scholar 

  • Bates, E. (1997). On language savants and the structure of the mind: Review of The Mind of a Savant: Language Learning and Modularity. International Journal of Bilingualism, 1(2), 163–179.

    Article  Google Scholar 

  • Bechtel, W. (1986). The nature of scientific integration. In W. Bechtel (Ed.), Integrating Scientific Disciplines (pp. 3–52). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bickerton, D. (2014). More Than Nature Needs: Language, Mind and Evolution. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Bishop, D. V. M. (2006). What causes specific language impairment in children? Current Directions in Psychological Science, 15(5), 217–221.

    Article  Google Scholar 

  • Brown, C. M., & Hagoort, P. (Eds.). (2000). The Neurocognition of Language. New York: Oxford University Press.

    Google Scholar 

  • Canesco-Gonzalez, E. (2000). Using the recording of event-related brain potentials in the study of sentence processing. In Y. Grodzinsky, L. Shapiro, & D. Swinney (Eds.), Language and the Brain: Representation and Processing (pp. 229–267). New York: Academic Press.

    Chapter  Google Scholar 

  • Caplan, D. (1984). The mental organ for language. In D. Caplan, A. R. Lecours, & A. Smith (Eds.), Biological Perspectives on Language (pp. 8–30). Cambridge: MIT Press.

    Google Scholar 

  • Caplan, D. (1996). Language: Structure, Processing and Disorders. Cambridge: MIT Press.

    Google Scholar 

  • Caplan, D., Waters, G., DeDe, G., Michaud, J., & Reddy, A. (2004). A study of syntactic processing in aphasia I: Behavioral (psycholinguistic) aspects. Brain and Language, 91, 64–65.

    Article  Google Scholar 

  • Caramazza, A., Capasso, R., Capitani, E., & Miceli, G. (2005). Patterns of comprehension performance in agrammatic Broca’s aphasia: A test of the Trace Deletion Hypothesis. Brain and Language, 94, 43–53.

    Article  Google Scholar 

  • Carroll, S. (2008). Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.

    Article  Google Scholar 

  • Curtiss, S. (1977). Genie: A Linguistic Study of a Modern-Day ‘Wild Child’. New York: Academic Press.

    Google Scholar 

  • Curtiss, S. (1994). Language as a cognitive system: Its independence and selective vulnerability. In C. Otero (Ed.), Noam Chomsky: Critical Assessments (pp. 211–255). London: Routledge.

    Google Scholar 

  • Curtiss, S. (2013). Revisiting modularity: Using language as a window to the mind. In M. Piattelli-Palmarini & R. C. Berwick (Eds.), Rich Languages from Poor Inputs (pp. 68–90). New York: Oxford University Press.

    Google Scholar 

  • Davies, M. (2010). Double dissociation: Understanding its role in cognitive neuropsychology. Mind and Language, 25(5), 500–540.

    Article  Google Scholar 

  • Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: Consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529–3550.

    Article  Google Scholar 

  • Dunn, J. C., & Kirsner, K. (2003). What can we infer from double dissociations? Cortex, 39, 1–7.

    Article  Google Scholar 

  • Embick, D., & Poeppel, D. (2014). Towards a computational(ist) neurobiology of language: Correlational, integrated and explanatory neurolinguistics. Language, Cognition and Neuroscience, 30(4), 357–366.

    Article  Google Scholar 

  • Enard, W., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.

    Article  Google Scholar 

  • Evans, V. (2014). The Language Myth: Why Language Is Not an Instinct. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Faroqi-Shah, Y., & Thompson, C. K. (2003). Effect of lexical cues on the production of active and passive sentences in Broca’s and Wernicke’s aphasia. Brain and Language, 85(3), 409–426.

    Article  Google Scholar 

  • Fava, E. (Ed.). (2002). Clinical Linguistics: Theory and Application in Speech Pathology and Therapy. Amsterdam: John Benjamins.

    Google Scholar 

  • Feldman, J. A. (2006). From Molecule to Metaphor: A Neural Theory of Language. Cambridge: MIT Press.

    Book  Google Scholar 

  • Fisher, S. E. (2006). Tangled webs: Tracing the connections between genes and cognition. Cognition, 101(2), 270–297.

    Article  Google Scholar 

  • Fisher, S. E., & Vernes, S. C. (2015). Genetics and the language sciences. Annual Review of Linguistics, 1, 289–310.

    Article  Google Scholar 

  • Friederici, A. D. (2004). Event-related brain potential studies in language. Current Neurology and Neuroscience Reports, 4(6), 466–470.

    Article  Google Scholar 

  • Friederici, A. D. (2017). Language in Our Brain: The Origins of a Uniquely Human Capacity. Cambridge: MIT Press.

    Book  Google Scholar 

  • Friedmann, N. & Rosou, D. (2015). Critical period for first language: The crucial role of language input during the first year of life. Current Opinion on Neurobiology, 35, 27–34.

    Google Scholar 

  • Gallistel, C. R., & King, A. P. (2009). Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience. New York: Wiley-Blackwell.

    Book  Google Scholar 

  • Geschwind, N. (1984). Neural mechanisms, aphasia and theories of language. In D. Caplan, A. R. Lecours, & A. Smith (Eds.), Biological Perspectives on Language (pp. 31–39). Cambridge: MIT Press.

    Google Scholar 

  • Gopnik, M. (1990). Genetic basis of grammar defect. Nature, 346(6281), 226.

    Article  Google Scholar 

  • Gopnik, M., Dalalakis, J., Fukuda, S. E., & Fukuda, S. (1997). The biological basis of language: Familial language impairment. In M. Gopnik (Ed.), The Inheritance and Innateness of Grammars (pp. 111–140). New York: Oxford University Press.

    Google Scholar 

  • Grimaldi, M. (2012). Toward a neural theory of language: Old issues and new perspectives. Journal of Neurolinguistics, 25(5), 304–327.

    Article  Google Scholar 

  • Grodzinsky, Y. (2000). The neurology of syntax: Language use without Broca’s area. Behavioral and Brain Sciences, 23, 1–21.

    Article  Google Scholar 

  • Haesler, S., et al. (2004). FoxP2 expression in avian vocal learners and non-learners. Journal of Neuroscience, 24, 3164–3175.

    Article  Google Scholar 

  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton & E. Szathmáry (Eds.), Biological Foundations and Origin of Syntax (pp. 279–298). Cambridge: MIT Press.

    Google Scholar 

  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28, 136–141.

    Article  Google Scholar 

  • Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 177, 263–277.

    Google Scholar 

  • Hartwigsen, G. (2015). The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain. Brain and Language, 148, 81–94.

    Article  Google Scholar 

  • Herschensohn, J. (2007). Language Development and Age. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hickok, G. (2014). The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition. New York: Norton.

    Google Scholar 

  • Hillert, D. G. (2015). On the evolving biology of language. Frontiers in Psychology, 6, 1796.

    Article  Google Scholar 

  • Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norel, S. V. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine and Child Neurology, 32, 352–355.

    Article  Google Scholar 

  • Johnson, G. (2009). Mechanisms and functional brain areas. Minds and Machines, 19, 255–271.

    Article  Google Scholar 

  • Johnson, G. (2012). The relationship between psychological capacities and neurobiological activities. European Journal for Philosophy of Science, 2(3), 453–480.

    Article  Google Scholar 

  • Johnston, J. R. (1997). Specific language impairment, cognition and the biological basis of language. In M. Gopnik (Ed.), The Inheritance and Innateness of Grammars (pp. 161–180). New York: Oxford University Press.

    Google Scholar 

  • Juola, P., & Plunkett, K. (2000). Why double dissociations don’t mean much. In G. Cohen, R. A. Johnston, & K. Plunkett (Eds.), Exploring Cognition: Damaged Brains and Neural Networks—Readings in Cognitive Neuropsychology and Connectionist Modeling (pp. 319–327). Sussex: Psychology Press.

    Google Scholar 

  • Kaan, E. (2009). Fundamental syntactic phenomena and their putative relation to the brain. In D. Bickerton & E. Szathmáry (Eds.), Biological Foundations and Origin of Syntax (pp. 117–134). Cambridge: MIT Press.

    Google Scholar 

  • Kang, C., & Drayna, D. (2011). Genetics of speech and language disorders. Annual Review of Genomics and Human Genetics, 12, 145–164.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge: MIT Press.

    Google Scholar 

  • Katsos, N., Roqueta, C. A., Estevan, R. A. C., & Cummins, C. (2011). Are children with specific language impairment competent with the pragmatics and logic of quantification? Cognition, 119(1), 43–57.

    Article  Google Scholar 

  • Kowalewski, H. (2017). Why neurolinguistics needs first-person methods. Language Sciences, 64, 167–179.

    Article  Google Scholar 

  • Lenneberg, E. (1967). Biological Foundations of Language. New York: Wiley.

    Book  Google Scholar 

  • Leonard, L. (2014). Children with Specific Language Impairment. Cambridge: MIT Press.

    Book  Google Scholar 

  • Levelt, W. J. M. (2008). Formal Grammars in Linguistics and Psycholinguistics. Amsterdam: John Benjamins.

    Book  Google Scholar 

  • Lewontin, R. (2000). The Triple Helix: Gene, Organism and Environment. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Luria, A. R. (1966). Higher Cortical Functions in Man. New York: Basic Books.

    Google Scholar 

  • MacDermot, K. D., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76(6), 1074–1080.

    Article  Google Scholar 

  • Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman.

    Google Scholar 

  • Marshall, J. C. (1980). On the biology of language acquisition. In D. Caplan (Ed.), Biological Studies of Mental Processes (pp. 106–148). Cambridge: MIT Press.

    Google Scholar 

  • Mondal, P. (2014). Language, Mind, and Computation. London: Palgrave Macmillan.

    Book  Google Scholar 

  • Moro, A. (2008). The Boundaries of Babel: The Brain and the Enigma of Impossible Languages. Cambridge: MIT Press.

    Book  Google Scholar 

  • Moro, A. (2016). Impossible Languages. Cambridge: MIT Press.

    Book  Google Scholar 

  • Murray, L. L. (2018). Sentence processing in aphasia: An examination of material-specific and general cognitive factors. Journal of Neurolinguistics, 48, 26–46.

    Article  Google Scholar 

  • Neuhaus, E., & Penke, M. (2008). Production and comprehension of wh-questions in German Broca’s aphasia. Journal of Neurolinguistics, 21(2), 150–176.

    Article  Google Scholar 

  • Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68(2–13), 309–320.

    Article  Google Scholar 

  • Newport, E. L., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In E. Dupoux (Ed.), Language, Brain and Cognitive Development (pp. 481–502). Cambridge: MIT Press.

    Google Scholar 

  • Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences USA, 108, 2522–2527.

    Article  Google Scholar 

  • Pedersen, N. L., Plomin, R., & McClearn, G. E. (1994). Is there G beyond g? (Is there genetic influence on specific cognitive abilities independent of genetic influence on general cognitive ability?). Intelligence, 18, 133–143.

    Article  Google Scholar 

  • Piattelli-Palmarini, M., & Berwick, R. C. (Eds.). (2012). Rich Languages from Poor Inputs. New York: Oxford University Press.

    Google Scholar 

  • Plomin, R. (2011). Why are children in the same family so different? Non-shared environment three decades later. International Journal of Epidemiology, 40(3), 582–592.

    Article  Google Scholar 

  • Rugg, M. D. (2000). Functional neuroimaging in cognitive neuroscience. In C. M. Brown & P. Hagoort (Eds.), The Neurocognition of Language (pp. 15–36). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Rutten, G. (2017). The Broca-Wernicke Doctrine: A Historical and Clinical Perspective on Localization of Language Functions. Berlin: Springer.

    Book  Google Scholar 

  • Sampson, G. (2005). The ‘Language Instinct’ Debate. London: Continuum.

    Google Scholar 

  • Seidenberg, M. S. (1988). Cognitive neuropsychology of language: The state of the art. Cognitive Neuropsychology, 5(4), 403–426.

    Article  Google Scholar 

  • Sesardic, N. (2005). Making Sense of Heritability. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shatz, M. (1994). Review of Laura: A case for the modularity of language. Language, 70(4), 789–796.

    Article  Google Scholar 

  • Smith, N., & Tsimpli, I. (1995). The Mind of a Savant: Language Learning and Modularity. Oxford: Blackwell.

    Google Scholar 

  • Sprouse, J., & Hornstein, N. (2016). Syntax and the cognitive neuroscience of syntactic structure building. In G. Hickok & S. A. Small (Eds.), Neurobiology of Language (pp. 165–174). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Stromswold, K. (2001). The heritability of language: A review and meta-analysis of twin, adoption and linkage studies. Language, 77, 647–723.

    Article  Google Scholar 

  • Stromswold, K. (2006). Why aren’t identical twins linguistically identical? Genetic, perinatal and postnatal factors. Cognition, 101, 333–384.

    Article  Google Scholar 

  • Stromswold, K. (2008). The genetics of speech and language disorders. New England Journal of Medicine, 359(22), 2381–2383.

    Article  Google Scholar 

  • Uttal, W. R. (2013). Reliability in Cognitive Neuroscience: A Meta-Meta-Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Van Berkum, J. J. A., Zwitserlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701–718.

    Article  Google Scholar 

  • van der Lely, H. K. J., & Christian, V. (2000). Lexical word formation in children with grammatical SLI: A grammar-specific versus an input-processing deficit? Cognition, 75(1), 33–63.

    Article  Google Scholar 

  • Van Lancker Sidtis, D. (2006). Does functional neuroimaging solve the questions of neurolinguistics? Brain and Language, 98, 276–290.

    Article  Google Scholar 

  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller & A. S. Meyer (Eds.), Phonetics and Phonology in Language Comprehension and Production: Differences and Similarities (pp. 241–278). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Vargha-Khadem, F., et al. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences, 92, 930–933.

    Article  Google Scholar 

  • Watkins, K. E., Dronkers, N. F., & Vargha-Khadem, F. (2002). Behavioural analysis of an inherited speech and language disorder: Comparison with acquired aphasia. Brain, 125(3), 452–464.

    Article  Google Scholar 

  • West-Eberhard, J. (2003). Developmental Plasticity and Evolution. New York: Oxford University Press.

    Google Scholar 

  • Yamada, J. E. (1990). Laura: A Case for the Modularity of Language. Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Mondal .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, P. (2020). Biological Foundations of Linguistic Cognition. In: Language, Biology and Cognition. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-23715-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23715-8_2

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-23714-1

  • Online ISBN: 978-3-030-23715-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics