Skip to main content

Pure and Mixed Stationary Nash Equilibria for Average Stochastic Positional Games

  • Chapter
  • First Online:
Frontiers of Dynamic Games

Abstract

In this paper we study the problem of the existence of Nash equilibria in pure and mixed stationary strategies for average stochastic positional games. We prove the existence of Nash equilibria in pure stationary strategies for an arbitrary two-player zero-sum average stochastic positional game and for an m-player average stochastic positional game in the case when the probability transition matrices induced by any profile of stationary strategies of the players are unichain. For the general case of an m-player average stochastic positional game we show that a Nash equilibrium in pure stationary strategies may not exist, however a Nash equilibrium always exists in mixed stationary strategies. Based on the proof of these results we present conditions for determining the optimal strategies of the players in the considered average stochastic positional games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpern, S.: Cycles in extensive form perfect information games. J. Math. Anal. Appl. 159, 1–17 (1991)

    Article  MathSciNet  Google Scholar 

  2. Codon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)

    Article  MathSciNet  Google Scholar 

  3. Dasgupta, P., Maskin, E.: The existence of equilibrium in discontinuous economic games. Rev. Econ. Stud. 53, 1–26 (1986)

    Article  MathSciNet  Google Scholar 

  4. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979)

    Article  MathSciNet  Google Scholar 

  5. Fan, K.: Application of a theorem concerned sets with convex sections. Math. Ann. 1963, 189–203 (1966)

    Article  Google Scholar 

  6. Flesch, J., Thuijsman, F., Vrieze, K.: Cyclic Markov equilibria in stochastic games. Int. J. Game Theory 26, 303–314 (1997)

    Article  MathSciNet  Google Scholar 

  7. Gurvich, V., Karzaniv, A., Khachyan, L.: Cyclic games and an algorithm to find minimax mean cyclles in directed graphs. USSR Comput. Math. Math. Phys. 28, 85–91 (1988)

    Article  Google Scholar 

  8. Lozovanu, D.: The game theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games. Int. J. Math. Model. Numer. Optim. 2(2), 162–174 (2011)

    MATH  Google Scholar 

  9. Lozovanu, D.: Stationary Nash equilibria for average stochastic positional games. In: Petrosyan, L.A., et al. (eds), Frontiers of Dynamic Games, Static and Dynamic Games Theory: Fondation and Applications, pp. 139–163. Springer, Birkhauser (2018)

    Chapter  Google Scholar 

  10. Lozovanu, D., Pickl, S.: Nash equilibria conditions for cyclic games with p players. Electron Notes Discrete Math. 25, 117–124 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lozovanu, D., Pickl, S.: Optimization and Multiobjective Control of Time-Discrete Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

  12. Lozovanu, D., Pickl, S.: Determining the optimal strategies for zero-sum average stochastic positional games. Electron Notes Discrete Math. 55, 155–159 (2016)

    Article  Google Scholar 

  13. Lozovanu, D., Pickl, S.: Nash equilibria in mixed stationary strategies for m-player mean payoff games on networks. Contrib. Game Theory Manag. 11, 103–112 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–293 (1953)

    Article  MathSciNet  Google Scholar 

  15. Puterman, M.: Markov Decision Processes: Discrete Dynamic Programming. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  16. Rogers, P.: Nonzero-Sum Stochastic Games. Report ORC, PhD thesis, University of California, Berkeley, pp. 69–8 (1966)

    Google Scholar 

  17. Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. U. S. A. 39, 1095–1100 (1953)

    Article  MathSciNet  Google Scholar 

  18. White, D. : Markov Decision processes. Wiley, New York (1993)

    MATH  Google Scholar 

  19. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 343–359 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referee for useful suggestions and remarks contributing to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Lozovanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lozovanu, D. (2019). Pure and Mixed Stationary Nash Equilibria for Average Stochastic Positional Games. In: Petrosyan, L., Mazalov, V., Zenkevich, N. (eds) Frontiers of Dynamic Games. Static & Dynamic Game Theory: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23699-1_8

Download citation

Publish with us

Policies and ethics