Skip to main content

Evaluation of Portfolio Decision Improvements by Markov Modulated Diffusion Processes: A Shapley Value Approach

  • Chapter
  • First Online:
Frontiers of Dynamic Games

Abstract

We use the Shapley value to evaluate the introduction of a second stochastic process to an optimization problem. We find that introducing a Time-Inhomogeneous Markov Modulated Diffusion process to an asset portfolio decision problem yields higher returns to the rational decision maker. These increases in returns can be diminished by a high volatility in the state change or a high discount factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banzhaf, J.F.: Weighted voting does not work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)

    Google Scholar 

  2. Bäuerle, N., Rieder, U.: Portfolio optimization with Markov-modulated stock prices and interest rates. IEEE T. Automat. Contr. 49(3), 442–447 (2004)

    Article  MathSciNet  Google Scholar 

  3. Cao, Z.: Multi-CoVaR and Shapley value: a systemic risk measure. Banque de France Working Paper (2013)

    Google Scholar 

  4. Colini-Baldeschi, R., Scarsini, M., Vaccari, S.: Variance allocation and Shapley value. Methodol. Comput. Appl. 20(3), 919–933 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cox, J.C., Huang, C.-f.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49(1), 33–83 (1989)

    Article  MathSciNet  Google Scholar 

  6. Dockner, E.J., Jorgensen, S., Van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  7. Fei, W.Y.: Optimal consumption and portfolio under inflation and markovian switching. Stochastics 85(2), 272–285 (2013)

    Article  MathSciNet  Google Scholar 

  8. Feltkamp, V.: Alternative axiomatic characterization of the Shapley and Banzhaf values. Int. J. Game Theory 24 179–186 (1995)

    Article  MathSciNet  Google Scholar 

  9. Fréchette, A., Kotthoff, L., Michalak, T.P., Rahwan, T., Hoos, H.H., Leyton-Brown, K.: Using the Shapley value to analyze algorithm portfolios. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3397–3403 (2016)

    Google Scholar 

  10. Garcia-Meza, M.A., Gromova, E.V., López-Barrientos, J.D.: Stable marketing cooperation in a differential game for an oligopoly. Int. Game Theory Rev. 20(3), 1750028 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jørgensen, S., Gromova, E.: Sustaining cooperation in a differential game of advertising goodwill accumulation. Eur. J. Oper. Res. 254(1), 294–303 (2016)

    Article  MathSciNet  Google Scholar 

  12. Jørgensen, S., Zaccour, G.: Differential Games in Marketing. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  13. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous time case. Rev. Econ. Stat. 247–257 (1969)

    Article  Google Scholar 

  14. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3(4), 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  15. Owen G.: Multilinear extensions and the Banzhaf value. Nav. Res. Logist. Q. 22, 741–750 (1975)

    Article  MathSciNet  Google Scholar 

  16. Peleg, B.: Axiomatizations of the core. In: Handbook of Game Theory with Economic Applications, pp. 397–412. Elsevier B. V., Amsterdam (1992)

    Chapter  Google Scholar 

  17. Petrosjan, L.A.: Stable solutions of differential games with many participants. Viestnik of Leningrad University 19, 46–52 (1977)

    Google Scholar 

  18. Petrosjan, L.A., Danilov N.N.: Cooperative Differential Games and Their Applications. Izd. Tomsk Univesity, Tomsk (1985)

    Google Scholar 

  19. Petrosjan, L., Zaccour, G.: Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control 27(3), 381–398 (2003)

    Article  MathSciNet  Google Scholar 

  20. Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51(3), 239–246 (1969)

    Article  Google Scholar 

  21. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48, 787–792 (1954)

    Article  Google Scholar 

  22. Sotomayor, L.R., Cadenillas, A.: Explicit solutions of consumption-investment problems in financial markets with regime switching. Math. Financ. 19(2), 251–279 (2009)

    Article  MathSciNet  Google Scholar 

  23. Vallejo-Jimenez, B., Venegas-Martinez F., Soriano-Morales Y.V.: Optimal consumption and portfolio decisions when the risky asset is driven by a time-inhomogeneous Markov modulated diffusion process. Int. J. Pure Appl. Math. 104(3), 353–362 (2015)

    Article  Google Scholar 

  24. Zariphopoulou, T.: Investment-consumption models with transaction fees and Markov-Chain parameters. SIAM J. Control Optim. 30(3), 613–636 (1992)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y.J., Wang, A.D., Da, Y.B.: Regional allocation of carbon emission quotas in China: evidence from the Shapley value method. Energ. Policy 74, 454–464 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Council of Science and Technology (CONACyT) of Mexico for its support. We are grateful to Universidad de Colima and Universidad Juárez del Estado de Durango.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Garcia-Meza .

Editor information

Editors and Affiliations

Appendices

Appendix 1

In this appendix we derive the results presented in Sect. 15.5. The problem represented by Eq. (15.4) subject to the wealth constraints described by Eq. (15.20) are then reduced by HJB equation to

$$\displaystyle \begin{aligned} J(a_t,t) = \max_{c_s |{}_{s \in [t, t + \mathrm{d} t]}} E \left[ \int_t^{t+\mathrm{d} t} u(c_s) \mathrm{e}^{-\rho s}\mathrm{d} s + \mathrm{d}(J(a_t, t)) + J(a_t, t) + o(\mathrm{d} t) \right], \end{aligned}$$

which can be reduced to

$$\displaystyle \begin{aligned} 0 = \max_{c_s |{}_{s\in [t, t+\mathrm{d} t]}} E\left[ u(c_t) \mathrm{e}^{-\rho t} \mathrm{d} t + o(\mathrm{d} t) + \mathrm{d}(J(a_t,t))\right]. \end{aligned}$$

This, according to the problem at hand, can be expressed then as

$$\displaystyle \begin{aligned} \mathrm{d}( J(a_t, t)) &= \left( \frac{\partial J(a_t,t)}{\partial t} + \frac{\partial J(a_t,t)}{\partial a_t} a_t\mu_a + \frac{1}{2} \frac{\partial^2 J(a_t,t)}{\partial a_t^2} a_t^2 \sigma^2_a \right) \mathrm{d} t + \\ & +\frac{\partial J(a_t,t)}{\mathrm{d} a_t} a_t \sigma_a \mathrm{d} W_t + \left(\sum_{j\in \mathcal{S}} q_{ij}(t) [ J(a_t,t,j) - J(a_t,t,i)] \right) \mathrm{d} t. \end{aligned} $$

where

$$\displaystyle \begin{aligned} \mathrm{d} a_t = a_t \mu_a \mathrm{d} t + a_t \sigma_a \mathrm{d} W_t, \end{aligned}$$
$$\displaystyle \begin{aligned} \mu_a = r + \theta_{t,i} (\mu_i-r) - \frac{c_t}{a_t}, \end{aligned}$$

and

$$\displaystyle \begin{aligned} \sigma_a = \theta_t \sigma_i. \end{aligned}$$

These solutions are substituted in the HJB equation, thus

$$\displaystyle \begin{aligned} 0 &= \max_{c_s |{}_{s\in [t, t+\mathrm{d} t]}} E \left[ u(c_t) \mathrm{e}^{-\rho t} \mathrm{d} t + \left( \frac{\partial J(a_t,t)}{\partial t} + \frac{\partial J(a_t,t)}{\partial a_t} a_t \left(r + \theta_{t,i}(\mu_i-r) - \frac{c_t}{a_t}\right) + \right. \right. \\ & \left. \left. \frac{1}{2}\frac{\partial^2J(a_t,t)}{\partial a_t^2} a^2_t \theta_{t,i}^2\sigma^2_i \right) \mathrm{d} t + \left( \sum_{j\in \mathcal{S}} q_{ij}(t) [J(a_t,t,j)- J(a_t,t,i)] \right)\mathrm{d} t \right] \end{aligned} $$
(15.32)

Appendix 2

This annex, refers directly to Vallejo et al. [23], some results on this paper are required in order to understand construction and use of several elements from Eqs. (15.6) to (15.14).

Referred paper brings closed-form solutions of the utility maximization problem, solving a continuous decision making problem for an infinitely-lived rational consumer with a logarithmic utility function, when the risky asset is driven by a Time-Inhomogeneous Markov Modulated chain and a classical Geometric Brownian motion.

General solution can be simplified and is consistent with simplified versions of this model, providing solutions for classical problems with fixed variations. Those classical models and their solutions are required for this research.

The bond and risky asset are defined as

$$\displaystyle \begin{aligned} \frac{\mathrm{d} b_{t} }{b_{t} } =r\mathrm{d} t \end{aligned} $$
(15.33)

and

$$\displaystyle \begin{aligned} \frac{\mathrm{d} S_{t} }{S_{t} } =\mu _{i} \mathrm{d} t+\sigma \mathrm{d} W_{t} \end{aligned} $$
(15.34)

And the utility maximization problem is given by

$$\displaystyle \begin{aligned} {\mathrm{Maximize}\; E\left[\int _{0}^{\infty }u(c_{t} )\mathrm{e}^{-\rho t} \mathrm{d} t | \mathcal{F}_{t} \right]} \end{aligned} $$
(15.35)
$$\displaystyle \begin{aligned} {\; \quad s.t.\; \; \mathrm{d} a_{t} =a_{t} (r+\theta _{t,i} (\mu _{i} -r)-\frac{c_{t} }{a_{t} } )\mathrm{d} t+a_{t} \theta _{t,i} \sigma _{i} \; \mathrm{d} W_{t} } \end{aligned} $$
(15.36)

Requiring optimal control tools, such as Hamilton-Jacobi-Bellman equation, defining a value function as

$$\displaystyle \begin{aligned} J(a_{t} ,t)=\mathop{\mathrm{Maximize}}\limits_{c_{s} |{}_{s\in [t,\infty )} } \; E\left[\int _{t}^{\infty }u(c_{s} )\mathrm{e}^{-\rho s} \mathrm{d} s \right] \end{aligned} $$
(15.37)

Simplifying this and applying mean value theorem for integral calculus, it follows that

$$\displaystyle \begin{aligned} 0=\mathop{\mathrm{Maximize}}\limits_{c_{s} |{}_{s\in [t,\; t+\mathrm{d} t]} } \; E\left[u(c_{t} )\mathrm{e}^{-\rho t} \mathrm{d} t+o(\mathrm{d} t)+\mathrm{d} (J(a_{t} ,t))\right] \end{aligned} $$
(15.38)

Now, in order to continue, Ito’s Lemma is applied to expand d(J(a t, t)), as

$$\displaystyle \begin{aligned} 0=\mathop{\mathrm{Maximize}}\limits_{c_{s} |{}_{s\in [t,\; t+\mathrm{d} t]} } \; E\left[\begin{array}{l} {u(c_{t} )\mathrm{e}^{-\rho t} \mathrm{d} t+o(\mathrm{d} t)+\frac{\partial J(a_{t} ,t)}{\partial a_{t} } a_{t} \theta _{t,i}^{} \sigma _{i} \mathrm{d} W_{t} } \\ {+\left(\frac{\partial J(a_{t} ,t)}{\partial t} +\frac{\partial J(a_{t} ,t)}{\partial a_{t} } a_{t} (r+\theta _{t,i} (\mu _{i} -r)-\frac{c_{t} }{a_{t} } )\right.}\\{\left. +\frac{1}{2} \frac{\partial ^{2} J(a_{t} ,t)}{\partial a_{t} ^{2} } a_{t} ^{2} \theta _{t,i}^{2} \sigma _{i}^{2} \right)\mathrm{d} t} \\ {+\left(\sum _{j\in E}q_{ij} (t)\left[J\left(a_{t} ,t,j\right)-J\left(a_{t} ,t,i\right)\right] \right)\mathrm{d} t} \end{array}\right] \end{aligned} $$
(15.39)

Under the assumption of independence between Brownian motion and Markov drift.

Equation (15.39) can be easily simplified by elimination of martingale elements as follows:

$$\displaystyle \begin{aligned} 0=\mathop{\mathrm{Maximize}}\limits_{c_{s} |{}_{s\in [t,\; t+\mathrm{d} t]} } \; E\left[\begin{array}{l} {u(c_{t} )\mathrm{e}^{-\rho t} \mathrm{d} t} \\ {+\left(\frac{\partial J(a_{t} ,t)}{\partial t} +\frac{\partial J(a_{t} ,t)}{\partial a_{t} } a_{t} (r+\theta _{t,i} (\mu _{i} -r)-\frac{c_{t} }{a_{t} } )\right.}\\{\left.+\frac{1}{2} \frac{\partial ^{2} J(a_{t} ,t)}{\partial a_{t} ^{2} } a_{t} ^{2} \theta _{t,i}^{2} \sigma _{i}^{2} \right)\mathrm{d} t} \\ {+\left(\sum _{j\in E}q_{ij} (t)\left[J\left(a_{t} ,t,j\right)-J\left(a_{t} ,t,i\right)\right] \right)\mathrm{d} t} \end{array}\right] \end{aligned} $$
(15.40)

Than under optimal conditions (assuming an optimal consumption), can be expressed as

$$\displaystyle \begin{aligned}0 &=u(c_{t}^{*} )\mathrm{e}^{-\rho t} +\frac{\partial J(a_{t} ,t)}{\partial {\kern 1pt} t} +\frac{\partial J(a_{t} ,t)}{\partial a_{t} } a_{t} (r+\theta _{t,i} (\mu _{i} -r)-\frac{c_{t}^{*} }{a_{t} } )+\frac{1}{2} \frac{\partial ^{2} J(a_{t} ,t)}{\partial a_{t} ^{2} } a_{t} ^{2} \theta _{t,i}^{2} \sigma _{i}^{2} \\ &+\sum _{j\in E}q_{ij} (t)\left[J\left(a_{t} ,t,j\right)-J\left(a_{t} ,t,i\right)\right] \end{aligned} $$
(15.41)

This kind of problems require both: an assumption for utility function and a proposed value function. By selecting a logarithmic utility, an admissible value function could be \(J\left (a_{t} ,t,i\right )=\beta _{0} +\beta _{1} u(a_{t} )e^{-\rho t} +g(t,i)e^{-\rho t} \).

Simplifying, we have

$$\displaystyle \begin{aligned} 0 &=u(c_{t}^{*} )-\rho \, (\beta _{0} +\beta _{1} u(a_{t} ))+\frac{\partial g(t,i)}{\partial t} -\rho g(t,i) \\ & + \beta _{1} u'(a_{t} )a_{t} (r+\theta _{t,i} (\mu _{i} -r)-\frac{c_{t}^{*} }{a_{t} } )+\frac{1}{2} \beta _{1} u''(a_{t} )a_{t} ^{2} \theta _{t,i}^{2} \sigma _{i}^{2} \\ &+\sum _{j\in E}q_{ij} (t)\left[g\left(t,j\right)-g\left(t,i\right)\right] \end{aligned} $$
(15.42)

And therefore, with a logarithmic utility, and some partial derivatives, optimal portfolio and consumption decisions follow \(\theta _{i} =\frac {\mu _{i} -r}{\sigma _{i}^{2} } \) and \(c_{t}^{*} =\rho a_{t} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallejo-Jimenez, B., Garcia-Meza, M.A. (2019). Evaluation of Portfolio Decision Improvements by Markov Modulated Diffusion Processes: A Shapley Value Approach. In: Petrosyan, L., Mazalov, V., Zenkevich, N. (eds) Frontiers of Dynamic Games. Static & Dynamic Game Theory: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23699-1_15

Download citation

Publish with us

Policies and ethics