Advertisement

Sampling the Integers with Low Relative Error

  • Michael WalterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11627)

Abstract

Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so.

Keywords

Sampling Discrete Gaussians Lattice-based cryptography 

References

  1. 1.
    Aguilar-Melchor, C., Albrecht, M.R., Ricosset, T.: Sampling from arbitrary centered discrete Gaussians for lattice-based cryptography. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 3–19. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_1CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., Walter, M.L.: dgs, Discrete Gaussians over the Integers (2018). https://bitbucket.org/malb/dgs
  3. 3.
    Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_1CrossRefzbMATHGoogle Scholar
  4. 4.
    Cousins, D.B., et al.: Implementing conjunction obfuscation under entropic ring LWE. In: 2018 IEEE Symposium on Security and Privacy, pp. 354–371. IEEE Computer Society Press, May 2018Google Scholar
  5. 5.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  6. 6.
    Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_26CrossRefGoogle Scholar
  7. 7.
    Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-based cryptography on a constrained device. Appl. Algebra Eng. Commun. Comput. 25(3), 159–180 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_7CrossRefGoogle Scholar
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM Press, May/June 2009Google Scholar
  10. 10.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM Press, May 2008Google Scholar
  11. 11.
    Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and evaluation of improved Gaussian sampling for lattice trapdoors. In: Proceedings of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC 2018, pp. 61–71. ACM, New York (2018)Google Scholar
  12. 12.
    Hallman, R.A., et al.: Building applications with homomorphic encryption. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 18: 25th Conference on Computer and Communications Security, pp. 2160–2162. ACM Press, October 2018Google Scholar
  13. 13.
    Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math. Softw. 42(1), 3:1–3:14 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  15. 15.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th Annual Symposium on Foundations of Computer Science, pp. 372–381. IEEE Computer Society Press, October 2004Google Scholar
  16. 16.
    Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_16CrossRefGoogle Scholar
  17. 17.
    Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 3–28. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_1CrossRefGoogle Scholar
  18. 18.
    Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44709-3_20CrossRefzbMATHGoogle Scholar
  19. 19.
    Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi divergence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 347–374. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_13CrossRefGoogle Scholar
  20. 20.
    Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: High precision discrete Gaussian sampling on FPGAs. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 383–401. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_19CrossRefGoogle Scholar
  21. 21.
    Saarinen, M.-J.O.: Gaussian sampling precision in lattice cryptography. Cryptology ePrint Archive, Report 2015/953 (2015). http://eprint.iacr.org/2015/953
  22. 22.
    Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: FAst, compact, and constant-time discrete Gaussian sampler over integers. Cryptology ePrint Archive, Report 2018/1234 (2018). https://eprint.iacr.org/2018/1234
  23. 23.
    Zheng, Z., Wang, X., Xu, G., Zhao, C.: Error estimation of practical convolution discrete Gaussian sampling with rejection sampling. Cryptology ePrint Archive, Report 2018/309 (2018). https://eprint.iacr.org/2018/309

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria

Personalised recommendations