Advertisement

An IND-CCA-Secure Code-Based Encryption Scheme Using Rank Metric

  • Hamad Al Shehhi
  • Emanuele Bellini
  • Filipe Borba
  • Florian Caullery
  • Marc Manzano
  • Victor MateuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11627)

Abstract

The use of rank instead of Hamming metric has been proposed to address the main drawback of code-based cryptography: large key sizes. There exist several Key Encapsulation Mechanisms (KEM) and Public Key Encryption (PKE) schemes using rank metric including some submissions to the NIST call for standardization of Post-Quantum Cryptography. In this work, we present an Open image in new window PKE scheme based on the McEliece adaptation to rank metric proposed by Loidreau at PQC 2017. This Open image in new window PKE scheme based on rank metric does not use a hybrid construction KEM + symmetric encryption. Instead, we take advantage of the bigger message space obtained by the different parameters chosen in rank metric, being able to exchange multiple keys in one ciphertext. Our proposal is designed considering some specific properties of the random error generated during the encryption. We prove our proposal Open image in new window -secure in the QROM by using a security notion called disjoint simulatability introduced by Saito et al. in Eurocrypt 2018. Moreover, we provide security bounds by using the semi-oracles introduced by Ambainis et al.

Keywords

Post Quantum Cryptography Code-based cryptography Rank metric Open image in new window PKE QROM 

References

  1. 1.
    Al Abdouli, A., et al.: Drankula, a McEliece-like rank metric based cryptosystem implementation. In: Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, ICETE 2018, vol. 2, SECRYPT, pp. 230–241 (2018)Google Scholar
  2. 2.
    Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018). https://eprint.iacr.org/2018/904
  3. 3.
    Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.: A new algorithm for solving the rank syndrome decoding problem. In: IEEE International Symposium on Information Theory, ISIT, pp. 2421–2425 (2018)Google Scholar
  4. 4.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055718CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, 1st edn. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_3CrossRefzbMATHGoogle Scholar
  7. 7.
    Coggia, D., Couvreur, A.: On the security of a Loidreau’s rank metric code based encryption scheme. arXiv preprint arXiv:1903.02933 (2019)
  8. 8.
    Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-79063-3_9CrossRefzbMATHGoogle Scholar
  9. 9.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pp. 542–552 (1991)Google Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_34CrossRefGoogle Scholar
  11. 11.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. (English translation of Problemy Peredachi Informatsii) 21(1), 3–16 (1985)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_41CrossRefzbMATHGoogle Scholar
  13. 13.
    Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_7CrossRefGoogle Scholar
  14. 14.
    Gadouleau, M., Yan, Z.: Complexity of decoding Gabidulin codes. In: 42nd Annual Conference on Information Sciences and Systems. CISS 2008, pp. 1081–1085 (2008)Google Scholar
  15. 15.
    Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_12CrossRefzbMATHGoogle Scholar
  16. 16.
    Loidreau, P.: A welch–berlekamp like algorithm for decoding gabidulin codes. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg (2006).  https://doi.org/10.1007/11779360_4CrossRefGoogle Scholar
  17. 17.
    Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_1CrossRefGoogle Scholar
  18. 18.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report, pp. 114–116, January and February 1978Google Scholar
  19. 19.
    Mosca, M., Stebila, D.: Contributors: Open quantum safe (2017). https://openquantumsafe.org/
  20. 20.
    NIST: Federal inf. process. stds. (nist fips) - 202 (2015). https://dx.doi.org/10.6028/NIST.FIPS.202
  21. 21.
    NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
  22. 22.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Overbeck, R.: Structural attacks for public-key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_17CrossRefzbMATHGoogle Scholar
  25. 25.
    Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 46:1–46:76 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wachter-Zeh, A.: Decoding of block and convolutional codes in rankmetric.Ph.D. thesis, Université Rennes 1 (2013). https://tel.archives-ouvertes.fr/tel-0105674

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamad Al Shehhi
    • 1
  • Emanuele Bellini
    • 1
  • Filipe Borba
    • 2
  • Florian Caullery
    • 1
  • Marc Manzano
    • 1
  • Victor Mateu
    • 1
    Email author
  1. 1.Darkmatter LLCAbu DhabiUnited Arab Emirates
  2. 2.Universidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations