Advertisement

A New Approach to Modelling Centralised Reputation Systems

  • Lydia GarmsEmail author
  • Elizabeth A. Quaglia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11627)

Abstract

A reputation system assigns a user or item a reputation value which can be used to evaluate trustworthiness. Blömer, Juhnke and Kolb in 2015, and Kaafarani, Katsumata and Solomon in 2018, gave formal models for centralised reputation systems, which rely on a central server and are widely used by service providers such as AirBnB, Uber and Amazon. In these models, reputation values are given to items, instead of users. We advocate a need for shift in how reputation systems are modelled, whereby reputation values are given to users, instead of items, and each user has unlinkable items that other users can give feedback on, contributing to their reputation value. This setting is not captured by the previous models, and we argue it captures more realistically the functionality and security requirements of a reputation system. We provide definitions for this new model, and give a construction from standard primitives, proving it satisfies these security requirements. We show that there is a low efficiency cost for this new functionality.

References

  1. 1.
    Amazon’s third-party sellers ship record-breaking 2 billion items in 2014, but merchant numbers stay flat. https://techcrunch.com/2015/01/05/amazon-third-party-sellers-2014/. Accessed 1 Apr 2019
  2. 2.
    Travis kalanick says uber has 40 million monthly active riders. https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/. Accessed 1 Apr 2019
  3. 3.
    Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 202–218. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70630-4_13CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_38CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, 3–5 November 1993, pp. 62–73. ACM Press, Fairfax (1993)Google Scholar
  6. 6.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30574-3_11CrossRefGoogle Scholar
  7. 7.
    Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14577-3_35CrossRefGoogle Scholar
  8. 8.
    Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–488. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_29CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_4CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_7CrossRefGoogle Scholar
  12. 12.
    Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, 25–29 October 2004, pp. 132–145. ACM Press, Washington (2004)Google Scholar
  13. 13.
    Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation. In: 2017 IEEE Symposium on Security and Privacy, SP, pp. 901–920. IEEE (2017)Google Scholar
  14. 14.
    Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45572-3_1CrossRefGoogle Scholar
  15. 15.
    Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49387-8_10CrossRefGoogle Scholar
  16. 16.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  17. 17.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006).  https://doi.org/10.1007/11958239_13CrossRefGoogle Scholar
  18. 18.
    Kaafarani, A.E., Katsumata, S., Solomon, R.: Anonymous reputation systems achieving full dynamicity from lattices. In: Twenty-Second International Conference on Financial Cryptography and Data Security (forthcoming)Google Scholar
  19. 19.
    Garms, L., Martin, K., Ng, S.-L.: Reputation schemes for pervasive social networks with anonymity. In: Proceedings of the fifteenth International Conference on Privacy, Security and Trust (PST 2017), IEEE (2017)Google Scholar
  20. 20.
    Garms, L., Quaglia, E.A.: A new approach to modelling centralised reputation systems. Cryptology ePrint Archive, Report 2019/453 (2019). https://eprint.iacr.org/2019/453
  21. 21.
    Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_15CrossRefGoogle Scholar
  22. 22.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46513-8_14CrossRefGoogle Scholar
  23. 23.
    Mármol, F.G., Pérez, G.M.: Security threats scenarios in trust and reputation models for distributed systems. Comput. Secur. 28(7), 545–556 (2009)CrossRefGoogle Scholar
  24. 24.
    Ng, S.-L., Martin, K., Chen, L., Li, Q.: Private reputation retrieval in public - a privacy-aware announcement scheme for vanets. IET Inf. Secur. (2016).  https://doi.org/10.1049/iet-ifs.2014.0316CrossRefGoogle Scholar
  25. 25.
    Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized additive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24747-0_9CrossRefGoogle Scholar
  26. 26.
    Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 1712–1718. ACM, New York (2014)Google Scholar
  27. 27.
    Scott, M.: Pairing implementation revisited. Cryptology ePrint Archive, Report 2019/077 (2019). https://eprint.iacr.org/2019/077
  28. 28.
    Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: AnonRep: towards tracking-resistant anonymous reputation. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 583–596. USENIX Association (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Information Security GroupRoyal Holloway University of LondonEghamUK

Personalised recommendations