Advertisement

Further Lower Bounds for Structure-Preserving Signatures in Asymmetric Bilinear Groups

  • Essam GhadafiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11627)

Abstract

Structure-Preserving Signatures (SPSs) are a useful tool for the design of modular cryptographic protocols. Recent series of works have shown that by limiting the message space of those schemes to the set of Diffie-Hellman (DH) pairs, it is possible to circumvent the known lower bounds in the Type-3 bilinear group setting thus obtaining the shortest signatures consisting of only 2 elements from the shorter source group. It has been shown that such a variant yields efficiency gains for some cryptographic constructions, including attribute-based signatures and direct anonymous attestation. Only the cases of signing a single DH pair or a DH pair and a vector from \(\mathbb {Z}_p\) have been considered. Signing a vector of group elements is required for various applications of SPSs, especially if the aim is to forgo relying on heuristic assumptions.

An open question is whether such an improved lower bound also applies to signing a vector of \(\ell > 1\) messages. We answer this question negatively for schemes existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) whereas we answer it positively for schemes existentially unforgeable under a random-message attack (EUF-RMA) and those which are existentially unforgeable under a combined chosen-random-message attack (EUF-CMA-RMA). The latter notion is a leeway between the two former notions where it allows the adversary to adaptively choose part of the message to be signed whereas the remaining part of the message is chosen uniformly at random by the signer.

Another open question is whether strongly existentially unforgeable under an adaptive chosen-message attack (sEUF-CMA) schemes with 2-element signatures exist. We answer this question negatively, proving it is impossible to construct sEUF-CMA schemes with 2-element signatures even if the signature consists of elements from both source groups. On the other hand, we prove that sEUF-RMA and sEUF-CMA-RMA schemes with 2-element (unilateral) signatures are possible by giving constructions for those notions.

Among other things, our findings show a gap between random-message/combined chosen-random-message security and chosen-message security in this setting.

Keywords

Digital signatures Bilinear groups Structure-preserving 

References

  1. 1.
    Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 3–22. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98113-0_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_3CrossRefGoogle Scholar
  3. 3.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_20CrossRefGoogle Scholar
  4. 4.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_12CrossRefGoogle Scholar
  5. 5.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_37CrossRefzbMATHGoogle Scholar
  6. 6.
    Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_34CrossRefGoogle Scholar
  7. 7.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_29CrossRefGoogle Scholar
  8. 8.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_22CrossRefGoogle Scholar
  9. 9.
    Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_19CrossRefGoogle Scholar
  10. 10.
    Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving signatures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 35–65. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_2CrossRefGoogle Scholar
  11. 11.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_6CrossRefGoogle Scholar
  12. 12.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_23CrossRefGoogle Scholar
  13. 13.
    Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable E-cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_5CrossRefGoogle Scholar
  14. 14.
    Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.: Strongly-optimal structure preserving signatures from type II pairings: synthesis and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_16CrossRefGoogle Scholar
  15. 15.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_33CrossRefGoogle Scholar
  16. 16.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS 2004, pp. 132–145. ACM (2004)Google Scholar
  17. 17.
    Camenisch, J., Dubovitskaya, M., Haralambiev, K.: Efficient structure-preserving signature scheme from standard assumptions. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 76–94. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_5CrossRefGoogle Scholar
  18. 18.
    Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_11CrossRefGoogle Scholar
  19. 19.
    Chase, M., Kohlweiss, M.: A new hash-and-sign approach and structure-preserving signatures from DLIN. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 131–148. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_8CrossRefzbMATHGoogle Scholar
  20. 20.
    Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 286–310. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_13CrossRefGoogle Scholar
  21. 21.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  22. 22.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled linkability without random Oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 161–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_9CrossRefGoogle Scholar
  24. 24.
    El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_17CrossRefGoogle Scholar
  25. 25.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  26. 26.
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_14CrossRefGoogle Scholar
  27. 27.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_12CrossRefzbMATHGoogle Scholar
  28. 28.
    Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(2008), 3113–3121 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_8CrossRefGoogle Scholar
  30. 30.
    Ghadafi, E.: Formalizing group blind signatures and practical constructions without random oracles. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 330–346. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39059-3_23CrossRefzbMATHGoogle Scholar
  31. 31.
    Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 305–321. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_18CrossRefGoogle Scholar
  32. 32.
    Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66399-9_3CrossRefGoogle Scholar
  33. 33.
    Ghadafi, E.: How low can you go? Short structure-preserving signatures for diffie-hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_10CrossRefGoogle Scholar
  34. 34.
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_12CrossRefGoogle Scholar
  35. 35.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  36. 36.
    Groth, J.: Efficient fully structure-preserving signatures for large messages. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 239–259. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_11CrossRefGoogle Scholar
  37. 37.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  39. 39.
    Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_7CrossRefGoogle Scholar
  40. 40.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
  41. 41.
    Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_15Google Scholar
  42. 42.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_24CrossRefGoogle Scholar
  43. 43.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: ACM CCS 1996, pp. 48–57. ACM (1996)Google Scholar
  44. 44.
    Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005).  https://doi.org/10.1007/11586821_1CrossRefzbMATHGoogle Scholar
  45. 45.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_18CrossRefGoogle Scholar
  46. 46.
    Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_22CrossRefGoogle Scholar
  47. 47.
    Wang, Y., Zhang, Z., Matsuda, T., Hanaoka, G., Tanaka, K.: How to obtain fully structure-preserving (automorphic) signatures from structure-preserving ones. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 465–495. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of the West of EnglandBristolUK

Personalised recommendations