Advertisement

Side Channel Analysis of SPARX-64/128: Cryptanalysis and Countermeasures

  • Sumesh Manjunath RameshEmail author
  • Hoda AlKhzaimi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11627)

Abstract

SPARX family of lightweight block cipher was introduced in Asiacrypt 2016. The family consists of three variants (a) SPARX-64/128, (b) SPARX-128/128 and (c) SPARX-128/256. In this work, first, we propose a technique to perform Correlation Power Analysis (CPA) on the SPARX-64/128 cipher. Our technique uses a combination of first-order, second-order and modulo addition CPA methods. Using our proposed technique we extract 128 key bits of SPARX-64/128 cipher with low complexities in general; key guess complexity of \(2^{12}\) and \(65000\approx 2^{16}\) power traces. We initially propose a countermeasure of SPARX-64/128 block cipher against side-channel attacks in terms of power analysis, a threshold implementation based on a serialized design of SPARX-64/128 core. The serialized design of SPARX-64/128 core is implemented in hardware and occupies 60 slices in FPGA. As a countermeasure, this serialized implementation is extended to propose a provably secure threshold implementation of SPARX-64/128 core (TI-SPARX). The TI-SPARX core occupies 131 slices in FPGA and runs at 144 MHz thus, giving a throughput of 9 Mbps. To the best of our knowledge, this is the first side channel attack and countermeasure result on SPARX-64/128 cipher.

Keywords

Side channel analysis Lightweight cryptography SPARX Correlation Power Analysis Threshold implementation 

Notes

Acknowledgement

This work is supported by Center of Cyber Security Abu Dhabi in NYUAD. The authors would like to acknowledge the support of Dr. K. K. Soundra Pandian and Mohammed Nabeel Thari Moopan.

References

  1. 1.
  2. 2.
    Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible differential attack on reduced round SPARX-64/128. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 135–146. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57339-7_8CrossRefGoogle Scholar
  3. 3.
    Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: a threshold implementation under 100 slices. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, pp. 1–6 (2015)Google Scholar
  4. 4.
    Shahverdi, A., Taha, M., Eisenbarth, T.: Lightweight side channel resistance: threshold implementations of SIMON. IEEE Trans. Comput. 66(4), 661–671 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block ciphers on FPGAs. Embed. Syst. Lett. 6(2), 37–40 (2014)CrossRefGoogle Scholar
  7. 7.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013)Google Scholar
  8. 8.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_17CrossRefGoogle Scholar
  9. 9.
    Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_18CrossRefGoogle Scholar
  10. 10.
    Chen, C., İnci, M.S., Taha, M., Eisenbarth, T.: SpecTre: a tiny side-channel resistant speck core for FPGAs. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 73–88. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54669-8_5CrossRefGoogle Scholar
  11. 11.
    Genkin, D., Shamir, A., Tromer, E.: Acoustic cryptanalysis. J. Cryptol. 30(2), 392–443 (2017)CrossRefGoogle Scholar
  12. 12.
    Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.): SPACE 2014. LNCS, vol. 8804. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12060-7CrossRefGoogle Scholar
  13. 13.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_18CrossRefGoogle Scholar
  14. 14.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052259CrossRefGoogle Scholar
  15. 15.
    Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).  https://doi.org/10.1007/11605805_13CrossRefGoogle Scholar
  16. 16.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_2CrossRefGoogle Scholar
  17. 17.
    Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48059-5_15CrossRefzbMATHGoogle Scholar
  18. 18.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-662-04722-4CrossRefzbMATHGoogle Scholar
  19. 19.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  20. 20.
    Lo, O., Buchanan, W.J., Carson, D.: Correlation power analysis on the PRESENT block cipher on an embedded device. In: Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES 2018. ACM (2018)Google Scholar
  21. 21.
    Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44706-7_11CrossRefGoogle Scholar
  22. 22.
    Yalla, P., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: 2009 International Conference on Reconfigurable Computing and FPGAs, Cancun, Quintana Roo, Mexico, ReConFig 2009 (2009)Google Scholar
  23. 23.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  24. 24.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45418-7_17CrossRefzbMATHGoogle Scholar
  25. 25.
    Ankele, R., List, E.: Differential cryptanalysis of round-reduced Sparx-64/128. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 459–475. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93387-0_24CrossRefGoogle Scholar
  26. 26.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935308_38CrossRefzbMATHGoogle Scholar
  27. 27.
    Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44499-8_19CrossRefGoogle Scholar
  28. 28.
    Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28166-7_27CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Cyber SecurityNew York University Abu DhabiAbu DhabiUAE
  2. 2.Division of EngineeringNew York University Abu DhabiAbu DhabiUAE
  3. 3.Tandon School of EngineeringNew York UniversityNew YorkUSA

Personalised recommendations