New Algorithms for Manipulating Sequence BDDs

  • Shuhei DenzumiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)


Sequence binary decision diagram (SeqBDD) is a data structure to represent and manipulate sets of strings. This is a variant of zero-suppressed binary decision diagram (ZDD) that manipulates combinatorial sets. Nowadays, binary decision diagrams (BDDs) and its family have been recognized as an important data structure to manipulate discrete structures. SeqBDD has some set manipulation operations inherited from ZDD, but the number of the operations is not enough to deal with a wide variety of requests in string processing area. In this paper, we propose 50 new algorithms for manipulating SeqBDDs. We divide the operations into three categories and list up them. We also analyzed the time and space complexities of some new algorithms.


Manipulation algorithm Operation Sequence binary decision diagram Data structure Complexity 


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)zbMATHGoogle Scholar
  2. 2.
    Alhakami, H., Ciardo, G., Chrobak, M.: Sequence decision diagrams. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 149–160. Springer, Cham (2014). Scholar
  3. 3.
    Aoki, H., Yamashita, S., Minato, S.: An efficient algorithm for constructing a sequence binary decision diagram representing a set of reversed sequences. In: Hong, T., et al. (eds.) Proceedings of 2011 IEEE International Conference on Granular Computing, pp. 54–59. IEEE Computer Society (2011).
  4. 4.
    Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.: The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40, 31–55 (1985). Scholar
  5. 5.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35(8), 677–691 (1986). Scholar
  6. 6.
    Bubenzer, J.: Minimization of acyclic DFAs. In: Holub, J., Ždárek, J. (eds.) Proceedings of Prague Stringology Conference 2011, pp. 132–146. Czech Technical University (2011).
  7. 7.
    Champarnaud, J.M., Pin, J.E.: A maxmin problem on finite automata. Discrete Appl. Math. 23(1), 91–96 (1989). Scholar
  8. 8.
    Crochemore, M.: Transducers and repetitions. Theoret. Comput. Sci. 45(1), 63–86 (1986). Scholar
  9. 9.
    Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  10. 10.
    Daciuk, J., Mihov, S., Watson, B.W., Watson, R.: Incremental construction of minimal acyclic finite state automata. Comput. Linguist. 26(1), 3–16 (2000). Scholar
  11. 11.
    Denzumi, S., Yoshinaka, R., Arimura, H., Minato, S.: Sequence binary decision diagram: minimization, relationship to acyclic automata, and complexities of Boolean set operations. Discrete Appl. Math. 212, 61–80 (2016). Scholar
  12. 12.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  13. 13.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)zbMATHGoogle Scholar
  14. 14.
    Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010). Scholar
  15. 15.
    Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large vocabularies. Softw. Pract. Exp. 23(1), 15–30 (1993). Scholar
  16. 16.
    Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215 (1954)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Michon, J.-F., Champarnaud, J.-M.: Automata and binary decision diagrams. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 178–182. Springer, Heidelberg (1999). Scholar
  18. 18.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Dunlop, A.E. (ed.) Proceedings of 30th Design Automation Conference, pp. 272–277. ACM Press (1993).
  19. 19.
    Mohri, M., Moreno, P., Weinstein, E.: Factor automata of automata and applications. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 168–179. Springer, Heidelberg (2007). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The University of TokyoBunkyoJapan

Personalised recommendations