Advertisement

New Algorithms for Manipulating Sequence BDDs

  • Shuhei DenzumiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)

Abstract

Sequence binary decision diagram (SeqBDD) is a data structure to represent and manipulate sets of strings. This is a variant of zero-suppressed binary decision diagram (ZDD) that manipulates combinatorial sets. Nowadays, binary decision diagrams (BDDs) and its family have been recognized as an important data structure to manipulate discrete structures. SeqBDD has some set manipulation operations inherited from ZDD, but the number of the operations is not enough to deal with a wide variety of requests in string processing area. In this paper, we propose 50 new algorithms for manipulating SeqBDDs. We divide the operations into three categories and list up them. We also analyzed the time and space complexities of some new algorithms.

Keywords

Manipulation algorithm Operation Sequence binary decision diagram Data structure Complexity 

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)zbMATHGoogle Scholar
  2. 2.
    Alhakami, H., Ciardo, G., Chrobak, M.: Sequence decision diagrams. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp. 149–160. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11918-2_15CrossRefGoogle Scholar
  3. 3.
    Aoki, H., Yamashita, S., Minato, S.: An efficient algorithm for constructing a sequence binary decision diagram representing a set of reversed sequences. In: Hong, T., et al. (eds.) Proceedings of 2011 IEEE International Conference on Granular Computing, pp. 54–59. IEEE Computer Society (2011).  https://doi.org/10.1109/GRC.2011.6122567
  4. 4.
    Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.: The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40, 31–55 (1985).  https://doi.org/10.1016/0304-3975(85)90157-4MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35(8), 677–691 (1986).  https://doi.org/10.1109/TC.1986.1676819CrossRefzbMATHGoogle Scholar
  6. 6.
    Bubenzer, J.: Minimization of acyclic DFAs. In: Holub, J., Ždárek, J. (eds.) Proceedings of Prague Stringology Conference 2011, pp. 132–146. Czech Technical University (2011). http://www.stringology.org/event/2011/p12.html
  7. 7.
    Champarnaud, J.M., Pin, J.E.: A maxmin problem on finite automata. Discrete Appl. Math. 23(1), 91–96 (1989).  https://doi.org/10.1016/0166-218X(89)90037-1MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Crochemore, M.: Transducers and repetitions. Theoret. Comput. Sci. 45(1), 63–86 (1986).  https://doi.org/10.1016/0304-3975(86)90041-1MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  10. 10.
    Daciuk, J., Mihov, S., Watson, B.W., Watson, R.: Incremental construction of minimal acyclic finite state automata. Comput. Linguist. 26(1), 3–16 (2000).  https://doi.org/10.1162/089120100561601MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Denzumi, S., Yoshinaka, R., Arimura, H., Minato, S.: Sequence binary decision diagram: minimization, relationship to acyclic automata, and complexities of Boolean set operations. Discrete Appl. Math. 212, 61–80 (2016).  https://doi.org/10.1016/j.dam.2014.11.022MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  13. 13.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)zbMATHGoogle Scholar
  14. 14.
    Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010).  https://doi.org/10.1007/s10115-009-0252-9CrossRefGoogle Scholar
  15. 15.
    Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large vocabularies. Softw. Pract. Exp. 23(1), 15–30 (1993).  https://doi.org/10.1002/spe.4380230103CrossRefGoogle Scholar
  16. 16.
    Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215 (1954)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Michon, J.-F., Champarnaud, J.-M.: Automata and binary decision diagrams. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 178–182. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48057-9_15CrossRefzbMATHGoogle Scholar
  18. 18.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Dunlop, A.E. (ed.) Proceedings of 30th Design Automation Conference, pp. 272–277. ACM Press (1993).  https://doi.org/10.1145/157485.164890
  19. 19.
    Mohri, M., Moreno, P., Weinstein, E.: Factor automata of automata and applications. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 168–179. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76336-9_17CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The University of TokyoBunkyoJapan

Personalised recommendations