Advertisement

Z-Automata for Compact and Direct Representation of Unranked Tree Languages

  • Johanna Björklund
  • Frank DrewesEmail author
  • Giorgio Satta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)

Abstract

Unranked tree languages are valuable in natural language processing for modelling dependency trees. We introduce a new type of automaton for unranked tree languages, called Z-automaton, that is tailored for this particular application. The Z-automaton offers a compact form of representation, and unlike the closely related notion of stepwise automata, does not require a binary encoding of its input. We establish an arc-factored normal form, and prove the membership problem of Z-automata in normal form to be in \( O \left( mn \right) \), where m is the size of the transition table of the Z-automaton and n is the size of the input tree.

Notes

Acknowledgment

We thank the reviewers for carefully reading the manuscript. In particular, we thank one reviewer who pointed out a flaw in the original version of Theorem 1.

References

  1. 1.
    Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alphabets: version 1. Techcial report HKUST-TCSC-2001-0, The Hong Kong University of Science and Technology (2001). http://repository.ust.hk/ir/Record/1783.1-738
  2. 2.
    Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25979-4_8CrossRefGoogle Scholar
  3. 3.
    Comon, H., et al.: Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007
  4. 4.
    Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Comput. Syst. 48(1), 23–47 (2011).  https://doi.org/10.1007/s00224-009-9224-4MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984). https://arxiv.org/abs/1509.06233zbMATHGoogle Scholar
  6. 6.
    Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization of tree automata. Theor. Comput. Sci. 410(37), 3539–3552 (2009).  https://doi.org/10.1016/j.tcs.2009.03.022. Preliminary version. In: CIAA 2007MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kübler, S., McDonald, R., Nivre, J.: Dependency Parsing. Morgan and Claypool Publishers, New York (2009).  https://doi.org/10.2200/S00169ED1V01Y200901HLT002CrossRefGoogle Scholar
  8. 8.
    Libkin, L.: Logics for unranked trees: an overview. Log. Methods Comput. Sci. 2(3), 1–31 (2006).  https://doi.org/10.2168/LMCS-2(3:2)2006MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009).  https://doi.org/10.1137/070699160MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Martens, W., Niehren, J.: Minimizing tree automata for unranked trees. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 232–246. Springer, Heidelberg (2005).  https://doi.org/10.1007/11601524_15CrossRefGoogle Scholar
  11. 11.
    Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata for unranked trees. J. Comput. System Sci. 73(4), 550–583 (2007).  https://doi.org/10.1016/j.jcss.2006.10.021MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johanna Björklund
    • 1
  • Frank Drewes
    • 1
    Email author
  • Giorgio Satta
    • 2
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations