New Approaches for Context Sensitive Flash Codes

  • Gilad Baruch
  • Shmuel T. Klein
  • Dana ShapiraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)


Rewriting codes for flash memory enable the multiple usage of the same storage space, under the constraint that 0-bits can be changed into 1-bits, but not vice versa. Context sensitive rewriting codes extend this idea by incorporating also information gathered from surrounding bits. Several new and better context sensitive rewriting codes based on automata are presented and analyzed. Empirical simulations show a good match with the theoretical results.


  1. 1.
    Assar, M., Nemazie, S., Estakhri, P.: Flash memory mass storage architecture. US Patent 5,388,083, issued Feb. 7 1995 (1995).
  2. 2.
    Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Comput. Surv. 37(2), 138–163 (2005). Scholar
  3. 3.
    Jiang, A., Bohossian, V., Bruck, J.: Rewriting codes for joint information storage in flash memories. IEEE Trans. Inf. Theory 56(10), 5300–5313 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Klein, S.T.: Should one always use repeated squaring for modular exponentiation? Inf. Process. Lett. 106(6), 232–237 (2008). Scholar
  5. 5.
    Klein, S.T., Ben-Nissan, M.K.: On the usefulness of Fibonacci compression codes. Comput. J. 53(6), 701–716 (2010). Scholar
  6. 6.
    Klein, S.T., Shapira, D.: Boosting the compression of rewriting on flash memory. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) DCC 2014, pp. 193–202. IEEE (2014)Google Scholar
  7. 7.
    Klein, S.T., Shapira, D.: Context sensitive rewriting codes for flash memory. Comput. J. 62(1), 20–29 (2019). Scholar
  8. 8.
    Kurkoski, B.M.: Rewriting codes for flash memories based upon lattices, and an example using the E8 lattice. In: ACTEMT 2010, pp. 1861–1865. IEEE (2010).
  9. 9.
    Rivest, R.L., Shamir, A.: How to reuse a ‘write-once’ memory. Inf. Control 55(1–3), 1–19 (1982). Scholar
  10. 10.
    Shpilka, A.: New constructions of WOM codes using the Wozencraft ensemble. IEEE Trans. Inf. Theory 59(7), 4520–4529 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yaakobi, E., Kayser, S., Siegel, P.H., Vardy, A., Wolf, J.K.: Codes for write-once memories. IEEE Trans. Inf. Theory 58(9), 5985–5999 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zeckendorf, E.: Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41, 179–182 (1972)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael
  2. 2.Deparment of Computer ScienceAriel UniversityArielIsrael

Personalised recommendations