Advertisement

Partitioning a Symmetric Rational Relation into Two Asymmetric Rational Relations

  • Stavros KonstantinidisEmail author
  • Mitja Mastnak
  • Juraj Šebej
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)

Abstract

We consider the problem of partitioning effectively a given symmetric (and irreflexive) rational relation R into two asymmetric rational relations. This problem is motivated by a recent method of embedding an R-independent language into one that is maximal R-independent, where the method requires to use an asymmetric partition of R. We solve the problem when R is realized by a zero-avoiding transducer (with some bound k): if the absolute value of the input-output length discrepancy of a computation exceeds k then the length discrepancy of the computation cannot become zero. This class of relations properly contains the recognizable, the left synchronous, and the right synchronous relations. We leave the asymmetric partition problem open when R is not zero-avoiding. We also show examples of total word-orderings for which there is a relation R that cannot be partitioned into two asymmetric rational relations with respect to the given word-orderings.

Keywords

Asymmetric relations Transducers Synchronous relations Word orderings 

Notes

Acknowledgement

We thank Jacques Sakarovitch for looking at this open problem and offering the opinion that it indeed appears to be non trivial.

References

  1. 1.
    Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979)CrossRefGoogle Scholar
  2. 2.
    Carton, O.: Left and right synchronous relations. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 170–182. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02737-6_13CrossRefGoogle Scholar
  3. 3.
    Choffrut, C.: Relations over words and logic: a chronology. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 89, 159–163 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  5. 5.
    Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into maximal ones. J. Autom. Lang. Comb. 21, 311–338 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5CrossRefzbMATHGoogle Scholar
  7. 7.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  8. 8.
    Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.) Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). LNM, vol. 586, pp. 180–188. Springer, Heidelberg (1977).  https://doi.org/10.1007/BFb0087133CrossRefGoogle Scholar
  9. 9.
    Yu, S.: Regular languages. In: Rozenberg, Salomaa [6], pp. 41–110.  https://doi.org/10.1007/978-3-642-59136-5_2CrossRefGoogle Scholar
  10. 10.
    Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing, Taichung (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stavros Konstantinidis
    • 1
    Email author
  • Mitja Mastnak
    • 1
  • Juraj Šebej
    • 1
    • 2
  1. 1.Saint Mary’s UniversityHalifaxCanada
  2. 2.Institute of Computer Science, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations