Advertisement

# Partitioning a Symmetric Rational Relation into Two Asymmetric Rational Relations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)

## Abstract

We consider the problem of partitioning effectively a given symmetric (and irreflexive) rational relation R into two asymmetric rational relations. This problem is motivated by a recent method of embedding an R-independent language into one that is maximal R-independent, where the method requires to use an asymmetric partition of R. We solve the problem when R is realized by a zero-avoiding transducer (with some bound k): if the absolute value of the input-output length discrepancy of a computation exceeds k then the length discrepancy of the computation cannot become zero. This class of relations properly contains the recognizable, the left synchronous, and the right synchronous relations. We leave the asymmetric partition problem open when R is not zero-avoiding. We also show examples of total word-orderings for which there is a relation R that cannot be partitioned into two asymmetric rational relations with respect to the given word-orderings.

## Keywords

Asymmetric relations Transducers Synchronous relations Word orderings

## References

1. 1.
Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979)
2. 2.
Carton, O.: Left and right synchronous relations. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 170–182. Springer, Heidelberg (2009).
3. 3.
Choffrut, C.: Relations over words and logic: a chronology. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 89, 159–163 (2006)
4. 4.
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
5. 5.
Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into maximal ones. J. Autom. Lang. Comb. 21, 311–338 (2016)
6. 6.
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1. Springer, Heidelberg (1997).
7. 7.
Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)
8. 8.
Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.) Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). LNM, vol. 586, pp. 180–188. Springer, Heidelberg (1977).
9. 9.
Yu, S.: Regular languages. In: Rozenberg, Salomaa , pp. 41–110.
10. 10.
Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing, Taichung (2005)Google Scholar

## Copyright information

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Stavros Konstantinidis
• 1
Email author
• Mitja Mastnak
• 1
• Juraj Šebej
• 1
• 2
1. 1.Saint Mary’s UniversityHalifaxCanada
2. 2.Institute of Computer Science, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovakia

## Personalised recommendations

### Citepaper 