A General Architecture of Oritatami Systems for Simulating Arbitrary Finite Automata

  • Yo-Sub Han
  • Hwee Kim
  • Yusei Masuda
  • Shinnosuke SekiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11601)


In this paper, we propose an architecture of oritatami systems with which one can simulate an arbitrary nondeterministic finite automaton (NFA) in a unified manner. The oritatami system is known to be Turing-universal but the simulation available so far requires 542 bead types and \(O(t^4 \log ^2 t)\) steps in order to simulate t steps of a Turing machine. The architecture we propose employs only 329 bead types and requires just \(O(t |Q|^4 |\varSigma |^2)\) steps to simulate an NFA with a state set Q working on a word of length t over an alphabet \(\varSigma \).


  1. 1.
    Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  2. 2.
    Demaine, E.D., et al.: Know when to fold ’Em: self-assembly of shapes by folding in Oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36. Springer, Cham (2018). Scholar
  3. 3.
    Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA Origami structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 1–19. Springer, Cham (2014). Scholar
  4. 4.
    Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold greedily during transcription. In: MFCS 2016. LIPIcs, vol. 58, pp. 43:1–43:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  5. 5.
    Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Proving the Turing universality of Oritatami co-transcriptional folding. In: Hsu, W., Lee, D., Liao, C. (eds.) ISAAC 2018. LIPIcs, vol. 123, pp. 23:1–23:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
  6. 6.
    Geary, C.W., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804 (2014). Scholar
  7. 7.
    Han, Y.-S., Kim, H.: Construction of geometric structure by Oritatami system. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 173–188. Springer, Cham (2018). Scholar
  8. 8.
    Han, Y., Kim, H., Masuda, Y., Seki, S.: A general architecture of Oritatami systems for simulating arbitrary finite automata (2019).
  9. 9.
    Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 261–273. Springer, Cham (2018). Scholar
  10. 10.
    Watters, K., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12), 1124–1133 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yo-Sub Han
    • 1
  • Hwee Kim
    • 2
  • Yusei Masuda
    • 3
  • Shinnosuke Seki
    • 3
    • 4
    Email author
  1. 1.Department of Computer ScienceYonsei UniversitySeodaemum-GuRepublic of Korea
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  3. 3.Department of Computer and Network EngineeringUniversity of Electro-CommunicationsChofuJapan
  4. 4.École Normale Supérieure de LyonLyonFrance

Personalised recommendations