Skip to main content

Calibrating a Calorimeter System

  • Chapter
  • First Online:
Calorimetry for Collider Physics, an Introduction

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 716 Accesses

Abstract

Calibration is an incredibly important aspect of working with calorimeters. Physicists want to measure particle energies with their calorimeters. The calorimeters produce electric signals. The calibration gives the recipe for converting one into the other. It turns out that calibration is highly non-trivial. In this chapter, the various methods that are being used, and the pitfalls encountered, are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PFA = Particle Flow Analysis, the topic of Chap. 12.

  2. 2.

    Note that CDF expressed calibration constants in ADC cts/GeV, whereas we use the inverse quantity (GeV/ct) elsewhere in this chapter.

References

  1. Sefkow, F., et al.: Rev. Mod. Phys. 88, 015003 (2016)

    Article  ADS  Google Scholar 

  2. Wigmans, R.: Calorimetry—Energy Measurement in Particle Physics, 2nd edn. International Series of Monographs on Physics, vol. 168. Oxford University Press, Oxford (2017)

    Google Scholar 

  3. Åkesson, T., et al.: Nucl. Instrum. Methods A262, 243 (1987)

    Article  ADS  Google Scholar 

  4. Wigmans, R., Zeyrek, M.: Nucl. Instrum. Methods A485, 385 (2002)

    Article  ADS  Google Scholar 

  5. Aharouche, M., et al.: Nucl. Instrum. Methods A568, 601 (2006)

    Article  ADS  Google Scholar 

  6. Aabouid, M., et al.: J. Instrum. 14, P03017 (2019)

    Article  Google Scholar 

  7. Cervelli, F., et al.: Nucl. Instrum. Methods A490, 132 (2002)

    Article  ADS  Google Scholar 

  8. Adloff, C., et al.: Nucl. Instrum. Methods A714, 147 (2013)

    Article  ADS  Google Scholar 

  9. Braunschweig, W., et al.: Nucl. Instrum. Methods A265, 419 (1988)

    Article  ADS  Google Scholar 

  10. Bertolucci, S., et al.: Nucl. Instrum. Methods A267, 301 (1988)

    Article  ADS  Google Scholar 

  11. Bagliesi, G., et al.: Nucl. Instrum. Methods A286, 61 (1990)

    Article  ADS  Google Scholar 

  12. Ganel, O., Wigmans, R.: Nucl. Instrum. Methods A409, 621 (1998)

    Article  ADS  Google Scholar 

  13. Albrow, M., et al.: Nucl. Instrum. Methods A487, 381 (2002)

    Article  ADS  Google Scholar 

  14. Ferrando, A., et al.: Nucl. Instrum. Methods A390, 63 (1997)

    Article  ADS  Google Scholar 

  15. Akchurin, N., et al.: Nucl. Instrum. Methods A400, 267 (1997)

    Article  ADS  Google Scholar 

  16. Sakumoto, W.K., et al.: Nucl. Instrum. Methods A294, 179 (1990)

    Article  ADS  Google Scholar 

  17. Adinolfi, M., et al.: Nucl. Instrum. Methods A482, 364 (2002)

    Article  ADS  Google Scholar 

  18. Alitti, J., et al.: Z. Phys. C 49, 17 (1991)

    Article  Google Scholar 

  19. Bocci, A., et al.: Int. J. Mod. Phys. A 16(suppl. 1A), 255 (2001)

    Article  Google Scholar 

  20. CMS Collaboration: Note CMS-PAS-PFT-09-001 (2009)

    Google Scholar 

  21. Behrens, U., et al.: Nucl. Instrum. Methods A289, 115 (1990)

    Article  ADS  Google Scholar 

  22. Catanesi, M.G., et al.: Nucl. Instrum. Methods A292, 97 (1990)

    Article  ADS  Google Scholar 

  23. Wigmans, R.: Ann. Rev. Nucl. Part. Sci. 41, 133 (1991)

    Article  ADS  Google Scholar 

  24. Buskulic, D., et al.: Nucl. Instrum. Methods A360, 481 (1995)

    Article  ADS  Google Scholar 

  25. Abramowicz, H., et al.: Nucl. Instrum. Methods 180, 429 (1981)

    Article  ADS  Google Scholar 

  26. Braunschweig, W., et al.: Nucl. Instrum. Methods A275, 246 (1989)

    Article  ADS  Google Scholar 

  27. Akhmadaliev, S., et al.: Nucl. Instrum. Methods A449, 461 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Livan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livan, M., Wigmans, R. (2019). Calibrating a Calorimeter System. In: Calorimetry for Collider Physics, an Introduction. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-23653-3_9

Download citation

Publish with us

Policies and ethics