Skip to main content

The Energy Resolution of Calorimeters

  • Chapter
  • First Online:
Calorimetry for Collider Physics, an Introduction

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

Abstract

In particle physics experiments, the energy resolution is often considered the most important performance characteristic of a calorimeter. In this chapter, the various factors that contribute to and limit the energy resolution of practical calorimeters are discussed. The precision with which the energy of a detected particle can be measured is not exclusively determined by the energy resolution, also the signal linearity is important in this context. Fundamental misconceptions in this context are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wigmans, R.: Calorimetry—Energy Measurement in Particle Physics, 2nd edn. International Series of Monographs on Physics, vol. 168. Oxford University Press, Oxford (2017)

    Google Scholar 

  2. Gingrich, D.M., et al.: Nucl. Instrum. Methods A364, 290 (1995)

    Article  ADS  Google Scholar 

  3. Fano, U.: Phys. Rev. 72, 26 (1947)

    Article  ADS  Google Scholar 

  4. Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin (1987)

    Book  Google Scholar 

  5. Hess, C.: Cryogenic Particle Detection. Topics in Applied Physics Series, vol. 99. Springer, Berlin (2005)

    Google Scholar 

  6. Abe, K., et al.: Phys. Rev. D 83, 052010 (2011)

    Article  ADS  Google Scholar 

  7. Brown, R.M., et al.: IEEE Trans. Nucl. Sci. NS–32, 736 (1985)

    Article  ADS  Google Scholar 

  8. Jeffreys, P.W., et al.: Rutherford Lab report RAL-85-058 (1985)

    Google Scholar 

  9. Akchurin, N., et al.: Nucl. Instrum. Methods A399, 202 (1997)

    Article  ADS  Google Scholar 

  10. Dubois, O., et al.: Nucl. Instrum. Methods A368, 640 (1996)

    Article  ADS  Google Scholar 

  11. Livan, M., Vercesi, V., Wigmans, R.: Scintillating-fibre Calorimetry, CERN Yellow Report, CERN 95–02, Genève, Switzerland (1995)

    Google Scholar 

  12. Antonelli, A., et al.: Nucl. Instrum. Methods A354, 352 (1995)

    Article  ADS  Google Scholar 

  13. Behrens, U., et al.: Nucl. Instrum. Methods A289, 115 (1990)

    Article  ADS  Google Scholar 

  14. Barr, G.D., et al.: Nucl. Instrum. Methods A370, 413 (1996)

    Article  ADS  Google Scholar 

  15. Aharouche, M., et al.: Nucl. Instrum. Methods A568, 601 (2006)

    Article  ADS  Google Scholar 

  16. Kistenev, E.P.: In: Gordon, H., Rueger, D. (eds.), Proceedings of 5th International Conference on Calorimetry in High Energy Physics, Brookhaven Nat. Lab., p. 211. World Scientific, Singapore (1995)

    Google Scholar 

  17. Gallucci, G.: J. Phys. Conf. Ser. 587, 012028 (2015)

    Article  Google Scholar 

  18. Berger, M.J.: Stopping Power and Range Tables for Electrons, Protons and Helium Ions, report NISTIR 4999 (1993). http://physics.nist.gov/Star

  19. Sefkow, F., et al.: Rev. Mod. Phys. 88, 015003 (2016)

    Article  ADS  Google Scholar 

  20. Collaboration, C.M.S.: Technical proposal for the phase-II upgrade of the Compact Muon Solenoid, CERN-LHCC-2015-10, CERN, Geneva (2015)

    Google Scholar 

  21. Drews, G., et al.: Nucl. Instrum. Methods A290, 335 (1990)

    Article  ADS  Google Scholar 

  22. Willis, W.J., Radeka, V.: Nucl. Instrum. Methods 120, 221 (1974)

    Article  ADS  Google Scholar 

  23. Diddens, A.N., et al.: Nucl. Instrum. Methods 178, 27 (1980)

    Article  ADS  Google Scholar 

  24. Amaldi, U.: Phys. Scripta 23, 409 (1981)

    Article  ADS  Google Scholar 

  25. Acosta, D., et al.: Nucl. Instrum. Methods A309, 143 (1991)

    Article  ADS  Google Scholar 

  26. Acosta, D., et al.: Nucl. Instrum. Methods A316, 184 (1992)

    Article  ADS  Google Scholar 

  27. Acosta, D., et al.: Nucl. Instrum. Methods A308, 481 (1991)

    Article  ADS  Google Scholar 

  28. Simonyan, M.: Performance of the ATLAS Tile Calorimeter to pions and protons. CERN-THESIS-2008-032 (2008)

    Google Scholar 

  29. Adragna, P., et al.: Nucl. Instrum. Methods A615, 158 (2010)

    Article  ADS  Google Scholar 

  30. ATLAS: The ATLAS Calorimeter Performance, report CERN/LHCC/96-40 (1996)

    Google Scholar 

  31. Cardini, A., et al.: Nucl. Instrum. Methods A808, 41 (2016)

    Article  ADS  Google Scholar 

  32. Sirois, Y., Wigmans, R.: Nucl. Instrum. Methods A240, 262 (1985)

    Article  ADS  Google Scholar 

  33. Andresen, A., et al.: Nucl. Instrum. Methods A309, 101 (1991)

    Article  ADS  Google Scholar 

  34. Åkesson, T., et al.: Nucl. Instrum. Methods A262, 243 (1987)

    Article  ADS  Google Scholar 

  35. Babusci, D., et al.: Nucl. Instrum. Methods A332, 444 (1993)

    Article  ADS  Google Scholar 

  36. Hartjes, F.G., Wigmans, R.: Nucl. Instrum. Methods A277, 379 (1989)

    Article  ADS  Google Scholar 

  37. Acosta, D., et al.: Nucl. Instrum. Methods A305, 55 (1991)

    Article  ADS  Google Scholar 

  38. Thomson, M.A.: Nucl. Instrum. Methods A611, 25 (2009)

    Article  ADS  Google Scholar 

  39. Wigmans, R.: J. Progr. Part. Nucl. Phys. 103, 109 (2018)

    Article  ADS  Google Scholar 

  40. Séguinot, J., et al.: Nucl. Instrum. Methods A323, 583 (1992)

    Article  ADS  Google Scholar 

  41. Antonelli, A.: Nucl. Instrum. Methods A877, 178 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Livan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livan, M., Wigmans, R. (2019). The Energy Resolution of Calorimeters. In: Calorimetry for Collider Physics, an Introduction. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-23653-3_6

Download citation

Publish with us

Policies and ethics