Skip to main content

Calorimetry—From Thermodynamics to Particle Detection

  • Chapter
  • First Online:
Calorimetry for Collider Physics, an Introduction

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 733 Accesses

Abstract

In this introductory chapter, the development of calorimetry from a crude technique for measuring the energy of electrically neutral particles (primarily photons) to the dominating precision tool it has become in modern particle physics experiments is described. The connection with the age-old thermodynamical technique with the same name is explained as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The primary experimental goal of this experiment was the detection of high-energy electrons and positrons produced in the target. These studies led in 1977 to the discovery of the b-quark [2].

References

  1. Appel, J.A., et al.: Nucl. Instrum. Methods 127, 495 (1975)

    ADS  Google Scholar 

  2. Herb, S.W., et al.: Phys. Rev. Lett. 39, 252 (1977)

    ADS  Google Scholar 

  3. Hofstadter, R., et al.: Nature 221, 228 (1969)

    ADS  Google Scholar 

  4. Hughes, E.B., et al.: Nucl. Instrum. Methods 75, 130 (1969)

    ADS  Google Scholar 

  5. Benvenuti, A., et al.: Nucl. Instrum. Methods 125, 447 (1975)

    ADS  Google Scholar 

  6. Young, G.R., et al.: Nucl. Instrum. Methods A279, 503 (1989)

    ADS  Google Scholar 

  7. Acosta, D., et al.: Nucl. Instrum. Methods A308, 481 (1991)

    ADS  Google Scholar 

  8. Beer, A., et al.: Nucl. Instrum. Methods A224, 360 (1984)

    Google Scholar 

  9. Arnison, G., et al.: Phys. Lett. B 122, 103 (1983)

    ADS  Google Scholar 

  10. Banner, M., et al.: Phys. Lett. B 122, 476 (1983)

    ADS  Google Scholar 

  11. Ereditato, A., et al.: J. Instrum. 8, P07002 (2013)

    Google Scholar 

  12. Kemp, E.: (2017). arXiv:1709.09385 [hep-ex]

  13. Peigneux, J.P., et al.: Nucl. Instrum. Methods A378, 410 (1996)

    ADS  Google Scholar 

  14. Bakken, J.A., et al.: Nucl. Instrum. Methods A254, 535 (1987)

    ADS  Google Scholar 

  15. Ahn, H.S., et al.: Nucl. Instrum. Methods A410, 179 (1998)

    ADS  Google Scholar 

  16. Dong, M.-Y., et al.: Chin. Phys. C 32, 11 (2008)

    ADS  Google Scholar 

  17. Akrawy, M.A., et al.: Nucl. Instrum. Methods A290, 76 (1990)

    ADS  Google Scholar 

  18. Anderson, D.F., et al.: Nucl. Instrum. Methods A290, 385 (1990)

    ADS  Google Scholar 

  19. Knoll, G.F.: Radiation Detection and Measurement, 4th edn. Wiley, New York (2010)

    Google Scholar 

  20. Doke, T., Masuda, K., Shibamura, E.: Nucl. Instrum. Methods A291, 617 (1990)

    ADS  Google Scholar 

  21. Doke, T., et al.: Nucl. Instrum. Methods A505, 199 (2003)

    ADS  Google Scholar 

  22. Mihara, S.: J. Phys. Conf. Ser. 308, 012009 (2011)

    Google Scholar 

  23. Fukuda, S., et al.: Nucl. Instrum. Methods A501, 418 (2003)

    ADS  Google Scholar 

  24. Halzen, F., Gaisser, ThK: Ann. Rev. Nucl. Part. Sci. 64, 101 (2014)

    ADS  Google Scholar 

  25. Ageron, M., et al.: Nucl. Instrum. Methods A656, 11 (2011)

    ADS  Google Scholar 

  26. Collaboration, The Pierre Auger: Nucl. Instrum. Methods 798, 172 (2015)

    ADS  Google Scholar 

  27. Aulchenko, V., et al.: J. Phys. Conf. Ser. 587, 012045 (2015)

    Google Scholar 

  28. Michael, D.G., et al.: Nucl. Instrum. Methods A596, 190 (2008)

    ADS  Google Scholar 

  29. Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin (1987)

    Google Scholar 

  30. Arnaudon, H., et al.: Nucl. Instrum. Methods A342, 558 (1994)

    ADS  Google Scholar 

  31. Lorenz, E., et al.: Nucl. Instrum. Methods A344, 64 (1994)

    ADS  Google Scholar 

  32. Renker, D., Lorenz, E.: J. Instrum. 4, P04004 (2009). and references therein

    Google Scholar 

  33. Simon, F.: (2018). arXiv:1811.03877 [hep-ex]

  34. Wigmans, R.: Calorimetry—Energy Measurement in Particle Physics, 2nd edn. International Series of Monographs on Physics, vol. 168. Oxford University Press, Oxford (2017)

    Google Scholar 

  35. Hartjes, F.G., Wigmans, R.: Nucl. Instrum. Meth. A277, 379 (1989)

    ADS  Google Scholar 

  36. Grupen, C., Shwartz, B.: Particle Detectors, 2nd edn. (2008) (Monographs on Particle Physics, Nuclear Physics and Cosmology, vol. 26. Cambridge University Press, Cambridge)

    Google Scholar 

  37. Almerio, S., et al.: Nucl. Instr. Meth. A527, 329 (2004)

    ADS  Google Scholar 

  38. Fanti, V., et al.: Nucl. Instrum. Methods A574, 433 (2007)

    ADS  Google Scholar 

  39. Baudis, L.: Ann. Phys. (Berlin) 528, 74 (2016)

    ADS  MathSciNet  Google Scholar 

  40. Nygren, D.R.: Phys. Scr. 23, 584 (1981)

    ADS  Google Scholar 

  41. Sauli, F.: Gaseous Radiation Detectors, Fundamentals and Applications. Monographs on Particle Physics, Nuclear Physics and Cosmology, vol. 36. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  42. Agnese, R., et al.: Phys. Rev. D 97, 022002 (2018)

    ADS  Google Scholar 

  43. Armengaud, E., et al.: (2017). arXiv:1706.01070 [phys.ins-det]

  44. Petricca, F., et al.: (2017). arXiv:1711.07692 [astro-ph]

  45. Alduino, C., et al.: Phys. Rev. Lett. 120, 132501 (2018)

    ADS  Google Scholar 

  46. Pretzl, K.: Nucl. Instr. Meth. A454, 114 (2000)

    ADS  Google Scholar 

  47. Enss, C. (ed.): Cryogenic Particle Detection. Springer, Berlin (2005)

    Google Scholar 

  48. Bevan, S., et al.: Astropart. Phys. 28, 366 (2007)

    ADS  Google Scholar 

  49. Aguilar, J.A., et al.: Nucl. Instrum. Methods A626–627, 128 (2005)

    Google Scholar 

  50. Price, B.J.: J. Geophys. Res. 111, B02201 (2006)

    ADS  Google Scholar 

  51. Abbasi, R., et al.: Astropart. Phys. 34, 382 (2011)

    ADS  Google Scholar 

  52. Laihem, K.: Nucl. Instrum. Methods A692, 192 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Livan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livan, M., Wigmans, R. (2019). Calorimetry—From Thermodynamics to Particle Detection. In: Calorimetry for Collider Physics, an Introduction. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-23653-3_1

Download citation

Publish with us

Policies and ethics