Skip to main content

Topology in Condensed Matter

  • Chapter
  • First Online:
Topological Orders with Spins and Fermions

Part of the book series: Springer Theses ((Springer Theses))

  • 767 Accesses

Abstract

Fundamental Physics focuses its efforts on finding out the smallest building blocks of matter. Following this purpose along the centuries, the elements were discovered in the 19th century and Chemistry achieved unprecedented significance. Throughout the 20th century, Physics has endorsed a feverishly search for elementary particles. On the contrary, Condensed Matter Physics plays around with the same atoms and electrons which have been studied for many centuries. Discoveries in this field are not new elements but the emergence of new phases using the same elements. Emergence describes the properties of a material by how the electrons and atoms are organised [1]. This implies that the wide range of materials does not come from the variety of the components. As a natural consequence, the main interest in this area is to find out how they combine together forming new states of matter. These very well-known components form a whole plethora of new states of matter: crystalline solids, magnets and superconductors are some representative examples. The effective field theory known as Landau-Ginzburg theory [2] gave a universal description for quantum phases of matter based on the dimensionality and the symmetries of local order parameters. The great success of the last century was to classify phases of matter following the principle of spontaneous symmetry breaking [3]. What Landau’s theory is lacking is precisely the quantum effects, since it is developed for systems at finite temperatures.

I think that there is only one way to do science - or to do philosophy, for that matter: to meet a problem, to see its beauty and fall in love with it; to get married to it and to live with it happily, till death do ye part (...). But even if you do obtain a solution, you may then discover, to your delight, the existence of a whole family of enchanting, though perhaps difficult, problem children, for whose welfare you may work, with a purpose, to the end of your days.

—K. F. Popper, Realism and the Aim of Science (1983)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wen X-G (2017) Colloquium: Zoo of quantum-topological phases of matter. Rev Mod Phys 89:041004

    Article  ADS  MathSciNet  Google Scholar 

  2. Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford

    MATH  Google Scholar 

  3. Anderson PW (1997) Basic notions of condensed matter physics. Pergamon Press, Oxford

    Google Scholar 

  4. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497

    Article  ADS  Google Scholar 

  5. Tsui DC, Stormer HL, Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett 48:1559–1562

    Article  ADS  Google Scholar 

  6. Bednorz JG, Müller KA (1986) Possible high-\(t_c\) superconductivity in the \(balacuo\) system. Zeitschrift für Physik B Condens Matter 64(2):189–193

    Google Scholar 

  7. Qi X-L, Hughes TL, Zhang S-C (2008) Topological field theory of time-reversal invariant insulators. Phys Rev B 78:195424

    Article  ADS  Google Scholar 

  8. Wen X-G (2002) Quantum orders and symmetric spin liquids. Phys Rev B 65:165113

    Article  ADS  Google Scholar 

  9. Bombin H (2010) Topological order with a twist: ising anyons from an abelian model. Phys Rev Lett 105:030403

    Google Scholar 

  10. Barkeshli M, Qi X-L (2014) Synthetic topological qubits in conventional bilayer quantum hall systems. Phys Rev X 4:041035

    Google Scholar 

  11. You Y-Z, Wen X-G (2012) Projective non-Abelian statistics of dislocation defects in a \({\mathbb{z}}_{N}\) rotor model. Phys Rev B 86:161107

    Article  ADS  Google Scholar 

  12. Lindner NH, Berg E, Refael G, Stern A (2012) Fractionalizing majorana fermions: non-abelian statistics on the edges of abelian quantum hall states. Phys Rev X 2:041002

    Google Scholar 

  13. Brown BJ, Bartlett SD, Doherty AC, Barrett SD (2013) Topological entanglement entropy with a twist. Phys Rev Lett 111:220402

    Article  ADS  Google Scholar 

  14. Petrova O, Tchernyshyov O (2011) Spin waves in a skyrmion crystal. Phys Rev B 84:214433

    Article  ADS  Google Scholar 

  15. Hamma A, Cincio L, Santra S, Zanardi P, Amico L (2013) Local response of topological order to an external perturbation. Phys Rev Lett 110:210602

    Article  ADS  Google Scholar 

  16. Kitaev AYu (2003) Fault-tolerant quantum computation by anyons. Ann Phys 303(1):2–30

    Google Scholar 

  17. Wen XG, Niu Q (1990) Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces. Phys Rev B 41:9377–9396

    Article  ADS  Google Scholar 

  18. Wen X-G (1991) Topological orders and chern-simons theory in strongly correlated quantum liquid. Int J Mod Phys B 05(10):1641–1648

    Article  ADS  MathSciNet  Google Scholar 

  19. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067

    Article  ADS  Google Scholar 

  20. Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057–1110

    Article  ADS  Google Scholar 

  21. Fidkowski L, Kitaev A (2010) Effects of interactions on the topological classification of free fermion systems. Phys Rev B 81:134509

    Article  ADS  Google Scholar 

  22. Fidkowski L, Kitaev A (2011) Topological phases of fermions in one dimension. Phys Rev B 83:075103

    Article  ADS  Google Scholar 

  23. Essin AM, Hermele M (2013) Classifying fractionalization: symmetry classification of gapped \({\mathbb{z}}_{2}\) spin liquids in two dimensions. Phys Rev B 87:104406

    Google Scholar 

  24. Mesaros A, Ran Y (2013) Classification of symmetry enriched topological phases with exactly solvable models. Phys Rev B 87:155115

    Google Scholar 

  25. Turner AM, Zhang Y, Mong RSK, Vishwanath A (2012) Quantized response and topology of magnetic insulators with inversion symmetry. Phys Rev B 85:165120

    Article  ADS  Google Scholar 

  26. Mong RSK, Essin AM, Moore JE (2010) Antiferromagnetic topological insulators. Phys Rev B 81:245209

    Article  ADS  Google Scholar 

  27. Liang F (2011) Topological crystalline insulators. Phys Rev Lett 106:106802

    Article  Google Scholar 

  28. Hughes TL, Prodan E, Bernevig BA (2011) Inversion-symmetric topological insulators. Phys Rev B 83:245132

    Article  ADS  Google Scholar 

  29. Hasan MZ, Moore JE (2011) Three-dimensional topological insulators. Ann Rev Condens Matter Phys 2(1):55–78

    Article  ADS  Google Scholar 

  30. Lu Y-M, Vishwanath A (2012) Theory and classification of interacting integer topological phases in two dimensions: a Chern-Simons approach. Phys Rev B 86:125119

    Article  ADS  Google Scholar 

  31. Chen X, Gu Z-C, Liu Z-X, Wen X-G (2013) Symmetry protected topological orders and the group cohomology of their symmetry group. Phys Rev B 87:155114

    Google Scholar 

  32. Turner AM, Pollmann F, Berg E (2011) Topological phases of one-dimensional fermions: an entanglement point of view. Phys Rev B 83:075102

    Article  ADS  Google Scholar 

  33. Tang E, Wen X-G (2012) Interacting one-dimensional fermionic symmetry-protected topological phases. Phys Rev Lett 109:096403

    Article  ADS  Google Scholar 

  34. Affleck I, Kennedy T, Lieb EH, Tasaki H (1987) Rigorous results on valence-bond ground states in antiferromagnets. Phys Rev Lett 59:799–802

    Article  ADS  Google Scholar 

  35. Pollmann F, Berg E, Turner AM, Oshikawa M (2012) Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys Rev B 85:075125

    Article  ADS  Google Scholar 

  36. Levin M, Gu Z-C (2012) Braiding statistics approach to symmetry-protected topological phases. Phys Rev B 86:115109

    Google Scholar 

  37. Wilczek F (1982) Quantum mechanics of fractional-spin particles. Phys Rev Lett 49:957–959

    Article  ADS  MathSciNet  Google Scholar 

  38. Arovas D, Schrieffer JR, Wilczek F (1984) Fractional statistics and the quantum hall effect. Phys Rev Lett 53:722–723

    Article  ADS  Google Scholar 

  39. Nayak C, Simon SH, Stern A, Freedman M, Sarma SD (2008) Non-Abelian anyons and topological quantum computation. Rev Mod Phys 80:1083–1159

    Article  ADS  MathSciNet  Google Scholar 

  40. Chen X (2017) Symmetry fractionalization in two dimensional topological phases. Rev Phys 2:3–18

    Article  Google Scholar 

  41. Martin-Delgado MA, Sierra G (1997) Strongly correlated magnetic and superconducting systems. Springer, Berlin

    MATH  Google Scholar 

  42. Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395–1398

    Article  ADS  Google Scholar 

  43. Haldane FDM (1983) Fractional quantization of the hall effect: a hierarchy of incompressible quantum fluid states. Phys Rev Lett 51:605–608

    Article  ADS  MathSciNet  Google Scholar 

  44. Halperin BI (1984) Statistics of quasiparticles and the hierarchy of fractional quantized hall states. Phys Rev Lett 52:1583–1586

    Article  ADS  Google Scholar 

  45. Jain JK (1989) Composite-fermion approach for the fractional quantum hall effect. Phys Rev Lett 63:199–202

    Article  ADS  Google Scholar 

  46. Kim C, Matsuura AY, Shen Z-X, Motoyama N, Eisaki H, Uchida S, Tohyama T, Maekawa S (1996) Observation of spin-charge separation in one-dimensional SrCuO\(_{2}\). Phys Rev Lett 77:4054–4057

    Article  ADS  Google Scholar 

  47. Senthil T, Fisher MPA (2000) \({Z}_{2}\) gauge theory of electron fractionalization in strongly correlated systems. Phys Rev B 62:7850–7881

    Article  ADS  Google Scholar 

  48. Recati A, Fedichev PO, Zwerger W, Zoller P (2003) Spin-charge separation in ultracold quantum gases. Phys Rev Lett 90:020401

    Article  ADS  Google Scholar 

  49. Wang F, Vishwanath A (2006) Spin-liquid states on the triangular and Kagomé lattices: a projective-symmetry-group analysis of Schwinger boson states. Phys Rev B 74:174423

    Article  ADS  Google Scholar 

  50. Levin M, Stern A (2009) Fractional topological insulators. Phys Rev Lett 103:196803

    Article  ADS  Google Scholar 

  51. Barkeshli M, Bonderson P, Cheng M, Wang Z (2014) Symmetry, defects, and gauging of topological phases. arXiv:1410.4540

  52. Song H, Huang S-J, Fu L, Hermele M (2017) Topological phases protected by point group symmetry. Phys Rev X 7:011020

    Google Scholar 

  53. Vishwanath A, Senthil T (2013) Physics of three-dimensional bosonic topological insulators: surface-deconfined criticality and quantized magnetoelectric effect. Phys Rev X 3:011016

    Google Scholar 

  54. Chen X, Burnell FJ, Vishwanath A, Fidkowski L (2015) Anomalous symmetry fractionalization and surface topological order. Phys Rev X 5:041013

    Google Scholar 

  55. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) A topological Dirac insulator in a quantum spin hall phase. Nature 452:970

    Article  ADS  Google Scholar 

  56. Hsieh D, Xia Y, Qian D, Wray L, Dil JH, Meier F, Osterwalder J, Patthey L, Checkelsky JG, Ong NP, Fedorov AV, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ (2008) A tunable topological insulator in the spin helical Dirac transport regime. Nature 460:1101

    Article  ADS  Google Scholar 

  57. Chiu C-K, Teo JCY, Schnyder AP, Ryu S (2016) Classification of topological quantum matter with symmetries. Rev Mod Phys 88:035005

    Article  ADS  Google Scholar 

  58. Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801

    Google Scholar 

  59. Fu L, Kane CL (2006) Time reversal polarization and a \({Z}_{2}\) adiabatic spin pump. Phys Rev B 74:195312

    Article  ADS  Google Scholar 

  60. Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302

    Article  ADS  Google Scholar 

  61. Wunsch B, Guinea F, Sols F (2008) Dirac-point engineering and topological phase transitions in honeycomb optical lattices. New J Phys 10(10):103027

    Article  Google Scholar 

  62. Viyuela O, Rivas A, Gasparinetti S, Wallraff A, Filipp S, Martin-Delgado MA (2018) Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf 4:10

    Article  ADS  Google Scholar 

  63. Fu L, Kane CL (2008) Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett 100:096407

    Google Scholar 

  64. Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu GD, Ding H, Shin S (2018) Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360(6385):182–186

    Article  ADS  Google Scholar 

  65. Ryu S, Hatsugai Y (2002) Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys Rev Lett 89:077002

    Article  ADS  Google Scholar 

  66. Schnyder AP, Ryu S (2011) Topological phases and surface flat bands in superconductors without inversion symmetry. Phys Rev B 84:060504

    Article  ADS  Google Scholar 

  67. Brydon PMR, Schnyder AP, Timm C (2011) Topologically protected flat zero-energy surface bands in noncentrosymmetric superconductors. Phys Rev B 84:020501

    Article  ADS  Google Scholar 

  68. Shitade A, Katsura H, Kuneš J, Qi X-L, Zhang S-C, Nagaosa N (2009) Quantum spin hall effect in a transition metal oxide Na\(_{2}\)IrO\(_{3}\). Phys Rev Lett 102:256403

    Google Scholar 

  69. Xiao D, Zhu W, Ran Y, Nagaosa N, Okamoto S (2009) Interface engineering of quantum hall effects in digital transition metal oxide heterostructures. Nat Commun 2:596

    Article  ADS  Google Scholar 

  70. Dzero M, Sun K, Coleman P, Galitski V (2012) Theory of topological Kondo insulators. Phys Rev B 85:045130

    Article  ADS  Google Scholar 

  71. Wolgast S, yan Kurdak Ç, Sun K, Allen JW, Kim D-J, Fisk Z (2013) Low-temperature surface conduction in the Kondo insulator SmB\({}_{6}\). Phys Rev B 88:180405 (2013)

    Google Scholar 

  72. Darriet J, Regnault LP (1993) The compound Y\(_{2}\)BaNiO\(_{5}\): a new example of a haldane gap in a \(S = 1\) magnetic chain. Solid State Commun 86(7):409–412

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ortiz Martín .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín, L. (2019). Topology in Condensed Matter. In: Topological Orders with Spins and Fermions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-23649-6_1

Download citation

Publish with us

Policies and ethics