Skip to main content

Cryopreservation as a Tool for Reef Restoration: 2019

  • Chapter
  • First Online:
Book cover Reproductive Sciences in Animal Conservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1200))

Abstract

Throughout the world coral reefs are being degraded at unprecedented rates. Locally, reefs are damaged by pollution, nutrient overload and sedimentation from out-dated land-use, fishing and mining practices. Globally, increased greenhouse gases are warming and acidifying oceans, making corals more susceptible to stress, bleaching and newly emerging diseases. The coupling of climate change impacts and local anthropogenic stressors has caused a widespread and well-recognized reef crisis. While the establishment and enforcement of marine protected areas and preventing the acceleration of climate change are essential to management of these stressors, the inexorable impacts of climate change will continue to cause declines in genetic diversity and population viability. Gamete cryopreservation has already acted as an effective insurance policy to maintain the genetic diversity of many wildlife species, and has now begun to be explored and applied to coral conservation. Cryopreservation can act to preserve reef biodiversity and genetic diversity. To date, we have had a great deal of success with cryopreserving sperm from ~30 coral species of coral species. Moreover, we are creating the basic science to freeze and thaw coral larvae that can soon be used to help secure and restore reefs. Building on these successes, we have established genetic banks using frozen samples and use those samples to help mitigate threats to the Great Barrier Reef and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony KRN. Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy. Annu Rev Environ Resour. 2016;41:59–81.

    Article  Google Scholar 

  • Baums IB. How to maximize future adaptive potential of restored coral populations. In: Reef Futures, Key Largo; 2018.

    Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystrom M. Confronting the coral reef crisis. Nature. 2004;429:827–33.

    Article  CAS  Google Scholar 

  • Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep. 2016;6:23619.

    Article  CAS  Google Scholar 

  • Bruckner AW (2002) Proceedings of the Caribbean Acropora workshop: potential application of the U.S. endangered species act as a conservation strategy.

    Google Scholar 

  • Buddemeier RW, Ware JR. Coral reef decline in the Caribbean. Science. 2003;302:391–3. author reply 391–393.

    Article  CAS  Google Scholar 

  • Cesar HLP. Coral reefs: their functions, threats and economic value. In: Cesar HLP, editor. Collected essays on the economics of coral reefs. Kalmar: CORDIO, University of Kalmar; 2000. p. 14–39.

    Google Scholar 

  • Combosch DJ, Vollmer SV. Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific. PLoS One. 2011;6:e21200.

    Article  CAS  Google Scholar 

  • Cox EF, Ward S. Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns. Mar Pollut Bull. 2002;44:1230–5.

    Article  CAS  Google Scholar 

  • Daly J, Zuchowicz N, Nunez Lendo CI, Khosla K, Lager C, Henley EM, Bischof J, Kleinhans FW, Lin C, Peters EC, Hagedorn M. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep. 2018;8:15714.

    Article  Google Scholar 

  • Daly J, Zuchowicz N, Hagedorn M. Proof of competence in laser-warmed coral larvae. 2019a (in prep).

    Google Scholar 

  • Daly J, Zuchowicz N, Hobbs R, O’Brien J, Bay LK, Hagedorn M. Cryopreservation can assist gene flow on the Great Barrier Reef. 2019b (in prep).

    Google Scholar 

  • Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460–2.

    Article  CAS  Google Scholar 

  • Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–96.

    Article  CAS  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.

    Article  CAS  Google Scholar 

  • GBRMPA. Final report: 2016 coral bleaching event on the Great Barrier Reef, Townsville. 2017.

    Google Scholar 

  • Glynn PW. Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol. 1996;2:495–509.

    Article  Google Scholar 

  • Glynn PW, D’Crox L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs. 1990;8:181–91.

    Article  Google Scholar 

  • Goreau TJ, Hayes RL, McClanahan T. Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol. 2000;14:5–15.

    Article  Google Scholar 

  • Great BarrierReef Outlook Report. 2009. http://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/429/1/Great-Barrier-Reef-outlook-report-2009-in-brief.pdf

    Google Scholar 

  • Hagedorn M, Carter VL. Seasonal preservation success of the marine dinoflagellate coral symbiont, Symbiodinium sp. PLoS One. 2015;10:e0136358.

    Article  Google Scholar 

  • Hagedorn M, Carter VL, Steyn RA, Krupp D, Leong JA, Lang RP, Tiersch TR. Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology. 2006a;52:454–8.

    Article  CAS  Google Scholar 

  • Hagedorn M, Pan R, Cox EF, Hollingsworth L, Krupp D, Lewis TD, Leong JC, Mazur P, Rall WF, MacFarlane DR, Fahy G, Kleinhans FW. Coral larvae conservation: physiology and reproduction. Cryobiology. 2006b;52:33–47.

    Article  CAS  Google Scholar 

  • Hagedorn M, Carter VL, Leong JC, Kleinhans FW. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology. 2010;60:147–58.

    Article  CAS  Google Scholar 

  • Hagedorn M, Carter V, Martorana K, Paresa MK, Acker J, Baums IB, Borneman E, Brittsan M, Byers M, Henley M, Laterveer M, Leong JA, McCarthy M, Meyers S, Nelson BD, Petersen D, Tiersch T, Uribe RC, Woods E, Wildt D. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One. 2012;7:e33354.

    Article  CAS  Google Scholar 

  • Hagedorn M, Farrell A, Carter VL. Cryobiology of coral fragments. Cryobiology. 2013;66:17–23.

    Article  CAS  Google Scholar 

  • Hagedorn M, Carter VL, Lager C, Camperio Ciani JF, Dygert AN, Schleiger RD, Henley EM. Bleaching effects on coral reproduction. Reprod Fertil Dev. 2016;28:1061–71.

    Article  CAS  Google Scholar 

  • Hagedorn M, Carter VL, Henley EM, van Oppen MJH, Hobbs R, Spindler RE. Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration. Sci Rep. 2017;7:14432.

    Article  Google Scholar 

  • Hagedorn M, Page CA, Oneill K, Flores DM, Tichy L, Chamberland VF, Lager C, Zuchowicz N, Lohr K, Blackburn H, Vardi T, Moore J, Moore T, Vermeij MJA, Marhaver KL. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated Caribbean populations using cryopreserved sperm. bioRxiv. 2018:492447.

    Google Scholar 

  • Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl. 1990;111:73–88.

    Google Scholar 

  • Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301:929–33.

    Article  CAS  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M. Coral reefs in the Anthropocene. Nature. 2017a;546:82–90.

    Article  CAS  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-Y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK. Global warming and recurrent mass bleaching of corals. Nature. 2017b;543:373–7.

    Article  CAS  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Coral Reefs. 2018;359:80–3.

    CAS  Google Scholar 

  • IPCC. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge; 2007.

    Google Scholar 

  • IUCN. Coral reefs. Gland: International Union for Conservation of Nature; 2019.

    Google Scholar 

  • Levin RL, Miller TW. An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology. 1981;18:32–48.

    Article  CAS  Google Scholar 

  • Levitan DR, Boudreau W, Jara J, Knowlton N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser. 2014;515:1–10.

    Article  Google Scholar 

  • Mazur P. Cryobiology: the freezing of biological systems. Science. 1970;168:939–49.

    Article  CAS  Google Scholar 

  • Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys. 1984;247(3. Pt 1):C125–42.

    Article  CAS  Google Scholar 

  • Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1997;14:251–72.

    Article  Google Scholar 

  • Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.

    Article  Google Scholar 

  • O’Mahony J, Simes R, Redhill D, Heaton K, Atkinson C, Hayward E, Nguyen M. At what price? The economic, social and icon value of the Great Barrier Reef: Deloitte Access Economics; 2017.

    Google Scholar 

  • Page C, Muller E, Vaughan D. Microfragmenting for the successful restoration of slow growing massive corals. Ecol Eng. 2018;123:86–94.

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G, Warner RR, Jackson JB. Global trajectories of the long-term decline of coral reef ecosystems. Science. 2003;301:955–8.

    Article  CAS  Google Scholar 

  • Rall WF. Advances in the cryopreservation of embryos and prospects for the application to the conservation of salmonid fishes. In: Thorgaard GH, Cloud JG, editors. Genetic conservation of salmonid fishes. New York: Plenum Press; 1993. p. 137–58.

    Chapter  Google Scholar 

  • Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature. 1985;313:573–5.

    Article  CAS  Google Scholar 

  • Shearer TL, Porto I, Zubillaga AL. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs. 2009;28:727–33.

    Article  CAS  Google Scholar 

  • Taylor R, Adams GD, Boardman CF, Wallis RG. Cryoprotection—permeant vs nonpermeant additives. Cryobiology. 1974;11:430–8.

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A. 2004;101:13531–5.

    Article  CAS  Google Scholar 

  • Ward S, Harrison P, Hoegh-Guldberg O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the ninth international coral reef symposium, Bali, 23–27 Oct 2000. 2002;2:1123–8.

    Google Scholar 

  • Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N. Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health. Mol Reprod Dev. 2010;77:397–409.

    Article  CAS  Google Scholar 

  • Wolf KN, Wildt DE, Vargas A, Marinari PE, Ottinger MA, Howard JG. Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biol. 2001;19:517–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Hagedorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hagedorn, M., Spindler, R., Daly, J. (2019). Cryopreservation as a Tool for Reef Restoration: 2019. In: Comizzoli, P., Brown, J., Holt, W. (eds) Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-23633-5_16

Download citation

Publish with us

Policies and ethics