Skip to main content

Autophagy and Tumorigenesis in Drosophila

  • Chapter
  • First Online:
The Drosophila Model in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1167))

  • The original version of this chapter was revised: The co-author’s name was incorrectly spelled as “Royjar” instead of “Rojyar” which has been corrected now. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-23629-8_15

Abstract

The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 12 December 2020

    The chapter was inadvertently published with one of the co-author’s name incorrectly spelled as “Royjar” instead of “Rojyar”. This error has now been corrected to read as “Rojyar Khezri”.

References

  1. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34(7):856–880

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L (2018) The autophagic network and cancer. Nat Cell Biol 20(3):243–251

    CAS  PubMed  Google Scholar 

  3. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM et al (2018) An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 9(1):2855

    PubMed  PubMed Central  Google Scholar 

  5. Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K et al (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25(8):1338–1354

    PubMed  PubMed Central  Google Scholar 

  6. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100(25):15077–15082

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12(4):485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee G, Liang C, Park G, Jang C, Jung JU, Chung J (2011) UVRAG is required for organ rotation by regulating Notch endocytosis in Drosophila. Dev Biol 356(2):588–597

    CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Farrell F, Lobert VH, Sneeggen M, Jain A, Katheder NS, Wenzel EM et al (2017) Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation. Nat Cell Biol 19(12):1412–1423

    PubMed  Google Scholar 

  14. Kannan K, Coarfa C, Rajapakshe K, Hawkins SM, Matzuk MM, Milosavljevic A et al (2014) CDKN2D-WDFY2 is a cancer-specific fusion gene recurrent in high-grade serous ovarian carcinoma. PLoS Genet 10(3):e1004216

    PubMed  PubMed Central  Google Scholar 

  15. Lee JH, Koh H, Kim M, Park J, Lee SY, Lee S et al (2006) JNK pathway mediates apoptotic cell death induced by tumor suppressor LKB1 in Drosophila. Cell Death Differ 13(7):1110–1122

    CAS  PubMed  Google Scholar 

  16. Nagy P, Kovacs L, Sandor GO, Juhasz G (2016) Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. Dis Model Mech 9(5):501–512

    PubMed  PubMed Central  Google Scholar 

  17. Nagy P, Sandor GO, Juhasz G (2018) Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Sci Rep 8(1):4644

    PubMed  PubMed Central  Google Scholar 

  18. Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH (2013) Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development (Cambridge, England) 140(6):1321–1329

    CAS  Google Scholar 

  19. Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, Stenmark H et al (2009) Comparative analysis of ESCRT-I, II, -III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122(Pt 14):2413–2423. https://doi.org/10.1242/jcs.046391. PMID: 19571114

  20. Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9(5):687–698

    CAS  PubMed  Google Scholar 

  21. Menut L, Vaccari T, Dionne H, Hill J, Wu G, Bilder D (2007) A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation. Genetics 177(3):1667–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 7(12):1232–1239

    PubMed  Google Scholar 

  23. Grifoni D, Bellosta P (2015) Drosophila Myc: a master regulator of cellular performance. Biochim Biophys Acta 1849(5):570–581

    CAS  PubMed  Google Scholar 

  24. Paiardi C, Mirzoyan Z, Zola S, Parisi F, Vingiani A, Pasini ME et al (2017) The Stearoyl-CoA Desaturase-1 (Desat1) in Drosophila cooperated with Myc to induce autophagy and growth, a potential new link to tumor survival. Genes (Basel) 8(5):131

    Google Scholar 

  25. Nagy P, Varga A, Pircs K, Hegedus K, Juhasz G (2013) Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet 9(8):e1003664

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223

    CAS  PubMed  Google Scholar 

  29. Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA, Sjottem E et al (2015) p62/Sequestosome-1, autophagy-related gene 8, and autophagy in Drosophila are regulated by nuclear factor erythroid 2-related factor 2 (NRF2), independent of transcription factor TFEB. J Biol Chem 290(24):14945–14962

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma M, Zhao H, Zhao H, Binari R, Perrimon N, Li Z (2016) Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila. Dev Biol 411(2):207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh SR, Zeng X, Zhao J, Liu Y, Hou G, Liu H et al (2016) The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature 538(7623):109–113

    CAS  PubMed  Google Scholar 

  32. Chi C, Zhu H, Han M, Zhuang Y, Wu X, Xu T (2010) Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J Biol Chem 285(28):21817–21823

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551

    CAS  PubMed  Google Scholar 

  34. Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the basolateral PDZ protein scribble. Nature 403(6770):676–680

    CAS  PubMed  Google Scholar 

  35. de Vreede G, Schoenfeld JD, Windler SL, Morrison H, Lu H, Bilder D (2014) The scribble module regulates retromer-dependent endocytic trafficking during epithelial polarization. Development (Cambridge, England) 141(14):2796–2802

    Google Scholar 

  36. Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16(3):458–465

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Enomoto M, Siow C, Igaki T (2018) Drosophila as a cancer model. Adv Exp Med Biol 1076:173–194

    CAS  PubMed  Google Scholar 

  38. Igaki T, Pagliarini RA, Xu T (2006) Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 16(11):1139–1146

    CAS  PubMed  Google Scholar 

  39. Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Rothlisberger M et al (2015) The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522(7557):482–486

    CAS  PubMed  Google Scholar 

  40. Perez E, Das G, Bergmann A, Baehrecke EH (2015) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene 34(26):3369–3376

    CAS  PubMed  Google Scholar 

  41. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM et al (2017) Microenvironmental autophagy promotes tumour growth. Nature 541(7637):417–420

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Thompson BJ, Mathieu J, Sung HH, Loeser E, Rorth P, Cohen SM (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9(5):711–720

    CAS  PubMed  Google Scholar 

  43. Moberg KH, Schelble S, Burdick SK, Hariharan IK (2005) Mutations in erupted, the Drosophila Ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9(5):699–710

    CAS  PubMed  Google Scholar 

  44. Shivas JM, Morrison HA, Bilder D, Skop AR (2010) Polarity and endocytosis: reciprocal regulation. Trends Cell Biol 20:445

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, Bolivar J, Gutierrez-Avino FJ, Dominguez M (2006) Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439(7075):430–436

    CAS  PubMed  Google Scholar 

  46. Manent J, Banerjee S, de Matos Simoes R, Zoranovic T, Mitsiades C, Penninger JM et al (2017) Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species. Oncogene 36(40):5576–5592

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25(5):1037–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Isakson P, Bjoras M, Boe SO, Simonsen A (2010) Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116(13):2324–2331

    CAS  PubMed  Google Scholar 

  49. Zhao S, Fortier TM, Baehrecke EH (2018) Autophagy promotes tumor-like stem cell niche occupancy. Curr Biol 28(19):3056–64 e3

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Katheder NS, Rusten TE (2017) Microenvironment and tumors-a nurturing relationship. Autophagy 13(7):1241–1243

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tor Erik Rusten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khezri, R., Rusten, T.E. (2019). Autophagy and Tumorigenesis in Drosophila. In: Deng, WM. (eds) The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, vol 1167. Springer, Cham. https://doi.org/10.1007/978-3-030-23629-8_7

Download citation

Publish with us

Policies and ethics