Skip to main content

A Drosophila Based Cancer Drug Discovery Framework

  • Chapter
  • First Online:
The Drosophila Model in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1167))

Abstract

In recent years, there has been growing interest in using Drosophila for drug discovery as it provides a unique opportunity to screen small molecules against complex disease phenotypes in a whole animal setting. Furthermore, gene-compound interaction experiments that combine compound feeding with complex genetic manipulations enable exploration of compound mechanisms of response and resistance to an extent that is difficult to achieve in other experimental models. Here, I discuss how compound screening and testing approaches reported in Drosophila fit into the current cancer drug discovery pipeline. I then propose a framework for a Drosophila-based cancer drug discovery strategy which would allow the Drosophila research community to effectively leverage the power of Drosophila to identify candidate therapeutics and push our discoveries into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonoshita M, Cagan RL (2017) Modeling human cancers in Drosophila. Curr Top Dev Biol 121:287–309

    CAS  PubMed  Google Scholar 

  3. Graham P, Pick L (2017) Drosophila as a model for diabetes and diseases of insulin resistance. Curr Top Dev Biol 121:397–419

    CAS  PubMed  Google Scholar 

  4. McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhandari P, Shashidhara LS (2001) Studies on human colon cancer gene APC by targeted expression in Drosophila. Oncogene 20:6871–6880

    CAS  PubMed  Google Scholar 

  6. Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G (2002) Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev 16:2627–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Micchelli CA et al (2003) γ-Secretase/presenilin inhibitors for Alzheimer’s disease phenocopy Notch mutations in Drosophila. FASEB J 17:79–81

    CAS  PubMed  Google Scholar 

  8. Vidal M, Wells S, Ryan A, Cagan R (2005) ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res 65:3538–3541

    CAS  PubMed  Google Scholar 

  9. Desai UA et al (2006) Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum Mol Genet 15:2114–2124

    CAS  PubMed  Google Scholar 

  10. Chang S et al (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263

    CAS  PubMed  Google Scholar 

  11. Bangi E, Garza D, Hild M (2011) In vivo analysis of compound activity and mechanism of action using epistasis in Drosophila. J Chem Biol 4:55–68

    PubMed  Google Scholar 

  12. Jaklevic B et al (2006) Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174:1963–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yadav AK, Srikrishna S, Gupta SC (2016) Cancer drug development using Drosophila as an in vivo tool: from bedside to bench and Back. Trends Pharmacol Sci 37:789–806

    CAS  PubMed  Google Scholar 

  14. Strange K (2016) Drug discovery in fish, flies, and worms. ILAR J 57:133–143

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38:497–504

    CAS  PubMed  Google Scholar 

  16. Markstein M (2013) Modeling colorectal cancer as a 3-dimensional disease in a dish: the case for drug screening using organoids, zebrafish, and fruit flies. Drug Discov Today Technol 10:e73–e81

    PubMed  Google Scholar 

  17. Das T, Cagan R (2010) Drosophila as a novel therapeutic discovery tool for thyroid cancer. Thyroid 20:689–695

    CAS  PubMed  Google Scholar 

  18. Das TK, Cagan RL (2013) A Drosophila approach to thyroid cancer therapeutics. Drug Discov Today Technol 10:e65–e71

    PubMed  PubMed Central  Google Scholar 

  19. Swinney DC (2013) Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther 93:299–301

    CAS  PubMed  Google Scholar 

  20. Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6:155–176

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sams-Dodd F (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10:139–147

    CAS  PubMed  Google Scholar 

  22. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    CAS  PubMed  Google Scholar 

  23. Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502

    CAS  PubMed  Google Scholar 

  24. Barker AJ et al (2001) Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett 11:1911–1914

    CAS  PubMed  Google Scholar 

  25. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    CAS  PubMed  Google Scholar 

  26. Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov 13:588–602

    CAS  PubMed  Google Scholar 

  27. Willoughby LF et al (2012) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6:521–529

    PubMed  PubMed Central  Google Scholar 

  28. Markstein M et al (2014) Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A 111:4530–4535

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levine BD, Cagan RL (2016) Drosophila lung cancer models identify trametinib plus statin as candidate therapeutic. Cell Rep 14:1477–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Levinson S, Cagan RL (2016) Drosophila cancer models identify functional differences between ret fusions. Cell Rep 16:3052–3061

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Das TK, Esernio J, Cagan RL (2018) Restraining network response to targeted cancer therapies improves efficacy and reduces cellular resistance. Cancer Res 78:4344–4359

    CAS  PubMed  Google Scholar 

  32. Das TK, Cagan RL (2017) KIF5B-RET oncoprotein signals through a multi-kinase signaling hub. Cell Rep 20:2368–2383

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bangi E, Murgia C, Teague AGS, Sansom OJ, Cagan RL (2016) Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun 7:13615

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Enomoto M, Siow C, Igaki T (2018) Drosophila as a cancer model. Adv Exp Med Biol 1076:173–194

    CAS  PubMed  Google Scholar 

  35. Herranz H, Eichenlaub T, Cohen SM (2016) Cancer in Drosophila: imaginal discs as a model for epithelial tumor formation. Curr Top Dev Biol 116:181–199

    CAS  PubMed  Google Scholar 

  36. Hou SX, Singh SR (2017) Stem-cell-based tumorigenesis in adult Drosophila. Curr Top Dev Biol 121:311–337

    CAS  PubMed  Google Scholar 

  37. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37

    CAS  PubMed  Google Scholar 

  38. Biankin AV, Piantadosi S, Hollingsworth SJ (2015) Patient-centric trials for therapeutic development in precision oncology. Nature 526:361–370

    CAS  PubMed  Google Scholar 

  39. Mendelsohn J (2013) Personalizing oncology: perspectives and prospects. J Clin Oncol 31:1904–1911

    CAS  PubMed  Google Scholar 

  40. Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12:358–369

    CAS  PubMed  Google Scholar 

  41. Nass SJ et al (2018) Accelerating anticancer drug development — opportunities and trade-offs. Nat Rev Clin Oncol 15:777–786

    PubMed  Google Scholar 

  42. Wong CH (2017) Estimation of clinical trial success rates and related parameters

    Google Scholar 

  43. Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10:143–153

    CAS  PubMed  Google Scholar 

  44. Casaluce F et al (2017) Selumetinib for the treatment of non-small cell lung cancer. Expert Opin Investig Drugs 26:973–984

    CAS  PubMed  Google Scholar 

  45. Infante JR et al (2012) Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol 13:773–781

    CAS  PubMed  Google Scholar 

  46. Borthakur G et al (2016) Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer 122:1871–1879

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jänne PA et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47

    PubMed  Google Scholar 

  48. Blumenschein GR Jr et al (2015) A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†. Ann Oncol 26:894–901

    PubMed  PubMed Central  Google Scholar 

  49. Sonoshita M et al (2018) A whole-animal platform to advance a clinical kinase inhibitor into new disease space. Nat Chem Biol 14:291–298

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10:197–208

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Davis MI et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

    CAS  PubMed  Google Scholar 

  53. Ciardiello F et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 10:784–793

    CAS  PubMed  Google Scholar 

  54. Wedge SR et al (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62:4645–4655

    CAS  PubMed  Google Scholar 

  55. McCarty MF et al (2004) ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor with additional activity against epidermal growth factor receptor tyrosine kinase, inhibits orthotopic growth and angiogenesis of gastric cancer. Mol Cancer Ther 3:1041–1048

    CAS  PubMed  Google Scholar 

  56. Wells SA et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30:134–141

    CAS  PubMed  Google Scholar 

  57. Wong CH, Siah KW, Lo AW (2018) Estimation of clinical trial success rates and related parameters. Biostatistics 20(2):273–286. https://doi.org/10.1093/biostatistics/kxx069

    Article  PubMed Central  Google Scholar 

  58. Massacesi C et al (2016) PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther 9:203–210

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guha R (2013) On exploring structure–activity relationships. Methods Mol Biol 993:81–94

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dar AC, Das TK, Shokat KM, Cagan RL (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486:80–84

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cagan R (2016) Drug screening using model systems: some basics. Dis Model Mech 9:1241–1244

    PubMed  PubMed Central  Google Scholar 

  62. Lonial S, Anderson KC (2014) Association of response endpoints with survival outcomes in multiple myeloma. Leukemia 28:258–268

    CAS  PubMed  Google Scholar 

  63. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    CAS  PubMed  Google Scholar 

  64. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    PubMed  Google Scholar 

  65. Cha Y et al (2018) Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 175:168–180

    CAS  PubMed  Google Scholar 

  66. Pushpakom S et al (2018) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. https://doi.org/10.1038/nrd.2018.168

  67. Breckenridge A, Jacob R (2019) Overcoming the legal and regulatory barriers to drug repurposing. Nat Rev Drug Discov 18:1–2

    CAS  PubMed  Google Scholar 

  68. Garralda E, Dienstmann R, Tabernero J (2017) Pharmacokinetic/Pharmacodynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ Book 37:210–215

    PubMed  Google Scholar 

  69. Lavé T, Caruso A, Parrott N, Walz A (2016) Translational PK/PD modeling to increase probability of success in drug discovery and early development. Drug Discov Today Technol 21–22:27–34

    PubMed  Google Scholar 

  70. Stricker-Krongrad A, Shoemake CR, Bouchard GF (2016) The miniature swine as a model in experimental and translational medicine. Toxicol Pathol 44:612–623

    PubMed  Google Scholar 

  71. Lipton SA, Nordstedt C (2016) Partnering with big pharma—what academics need to know. Cell 165:512–515

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Ross Cagan for feedback on this manuscript.

Conflicts of Interest

The author declares no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Bangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bangi, E. (2019). A Drosophila Based Cancer Drug Discovery Framework. In: Deng, WM. (eds) The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, vol 1167. Springer, Cham. https://doi.org/10.1007/978-3-030-23629-8_14

Download citation

Publish with us

Policies and ethics