Advertisement

Digestible and Non-digestible Polysaccharide Roles in Reformulating Foods for Health

  • John A. MonroEmail author
Chapter
  • 323 Downloads

Abstract

Structure is a fundamental factor in determining the way that digestible and non-digestible food carbohydrates (mono- and di-saccharides, oligo-saccharides and polysaccharides) influence a range of health outcomes. Much of the influence of carbohydrate structure on health is mediated by its effects on digestive processes throughout the gut. At each region within the gut a hierarchy of carbohydrate-based food structures – monosaccharide, individual polysaccharide, associated polysaccharides, cell walls, plant tissues and food particles – may constrain or enhance digestive processes. The role of carbohydrate structure in health and reformulation for health, through its effects at the gut level, is the focus of this chapter. Emphasis is placed on blood glucose loading, colonic fermentation and distal colonic bulking, because they are at the base of clusters of health outcomes arising from hyperglycaemia, dysbiosis and constipation, respectively. This chapter outlines principles governing choice of carbohydrate ingredients in reformulating for health, based on the role of food structure in function. Precise prescription of formulations is not possible because of the need for empirical testing of products due to the complexity of food component interactions, emergent properties and sensory effects in food products.

Keywords

Food structure Cell walls Viscosity Digestion Colon 

References

  1. Berg, T., Singh, J., Hardacre, A., & Boland, M. J. (2012). The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydrate Polymers, 87, 1678–1688.CrossRefGoogle Scholar
  2. Bhattarai, R. R., Dhital, S., Wu, P., Chen, X. D., & Gidley, M. J. (2017). Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis. Food & Function, 8, 2573–2582.CrossRefGoogle Scholar
  3. Borneo, R., & Leon, A. E. (2012). Whole grain cereals: Functional components and health benefits. Food & Function, 3, 110–119.CrossRefGoogle Scholar
  4. Brownlee, M. (2005). The pathobiology of diabetic complications – a unifying mechanism. Diabetes, 54, 1615–1625.CrossRefGoogle Scholar
  5. Capuano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 57, 3543–3564.PubMedCrossRefGoogle Scholar
  6. Champ, M., Langkilde, A. M., Brouns, F., Kettlitz, B., & Collet, Y. L. (2003). Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16, 71–82.PubMedCrossRefGoogle Scholar
  7. Coudray, C., Tressol, J. C., Gueux, E., & Rayssiguier, Y. (2003). Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. European Journal of Nutrition, 42, 91–98.PubMedCrossRefGoogle Scholar
  8. Cummings, J. H., & Engineer, A. (2018). Denis Burkitt and the origins of the dietary fibre hypothesis. Nutrition Research Reviews, 31, 1–15.PubMedCrossRefGoogle Scholar
  9. Dhital, S., & Gidley, M. (2016). Nutritional role of cellulose beyond faecal bulking. Journal of Nutrition & Intermediary Metabolism, 4, 25–25.CrossRefGoogle Scholar
  10. Dhital, S., Bhattarai, R. R., Gorham, J., & Gidley, M. J. (2016). Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food & Function, 7, 1367–1379.CrossRefGoogle Scholar
  11. Dikeman, C. L., & Fahey, G. C., Jr. (2006). Viscosity as related to dietary fiber: A review. Critical Reviews in Food Science and Nutrition, 46, 649–663.PubMedCrossRefGoogle Scholar
  12. Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutrition Research Reviews, 23, 65–134.PubMedCrossRefGoogle Scholar
  13. Fuller, S., Tapsell, L. C., & Beck, E. J. (2018). Creation of a fibre categories database to quantify different dietary fibres. Journal of Food Composition and Analysis, 71, 36–43.CrossRefGoogle Scholar
  14. Gelinas, P. (2013). Preventing constipation: A review of the laxative potential of food ingredients. International Journal of Food Science and Technology, 48, 445–467.CrossRefGoogle Scholar
  15. Gidley, M. J. (2013). Hydrocolloids in the digestive tract and related health implications. Current Opinion in Colloid and Interface Science, 18, 371–378.CrossRefGoogle Scholar
  16. Gill, P. A., van Zelm, M. C., Muir, J. G., & Gibson, P. R. (2018). Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics, 48, 15–34.CrossRefGoogle Scholar
  17. Govers, M., Gannon, N. J., Dunshea, F. R., Gibson, P. R., & Muir, J. G. (1999). Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: A study in pigs. Gut, 45, 840–847.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grabitske, H., & Slavin, J. (2009). Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition, 49, 327–360.PubMedCrossRefGoogle Scholar
  19. Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426, 3838–3850.PubMedCrossRefGoogle Scholar
  20. Hansen, N. W., & Sams, A. (2018). The microbiotic highway to health-new perspective on food structure, gut microbiota, and host inflammation. Nutrients, 10, E1590.PubMedCrossRefGoogle Scholar
  21. Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. Quarterly Review of Biology, 90, 251–268.PubMedCrossRefGoogle Scholar
  22. Holt, S. H. A., & Miller, J. B. (1994). Particle-size, satiety and the glycemic response. European Journal of Clinical Nutrition, 48, 496–502.PubMedGoogle Scholar
  23. Horowitz, M., O'Donovan, D., Jones, K. L., Feinle, C., Rayner, C. K., & Samsom, M. (2002). Gastric emptying in diabetes: Clinical significance and treatment. Diabetic Medicine, 19, 177–194.PubMedCrossRefGoogle Scholar
  24. Howlett, J. F., Betteridge, V. A., Champ, M., Craig, S. A. S., Meheust, A., & Jones, J. M. (2010). The definition of dietary fiber - discussions at the Ninth Vahouny Fiber Symposium: Building scientific agreement. Food & Nutrition Research, 54, 5750.CrossRefGoogle Scholar
  25. Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21, 8787–8803.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kho, Z. Y., & Lal, S. K. (2018). The human gut microbiome - a potential controller of wellness and disease. Frontiers in Microbiology, 9, 1835.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kim, C. H. (2018). Immune regulation by microbiome metabolites. Immunology, 154, 220–229.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kim, E., Coelho, D., & Blachier, F. (2013). Review of the association between meat consumption and risk of colorectal cancer. Nutrition Research, 33, 983–994.PubMedCrossRefGoogle Scholar
  29. Lentle, R. G. (2018). Deconstructing the physical processes of digestion: Reductionist approaches may provide greater understanding. Food & Function, 9, 4069–4084.CrossRefGoogle Scholar
  30. Lentle, R. G., & de Loubens, C. (2015). A review of mixing and propulsion of chyme in the small intestine: Fresh insights from new methods. Journal of Comparative Physiology B, 185, 369–387.CrossRefGoogle Scholar
  31. Mackie, A., Bajka, B., & Rigby, N. (2016a). Roles for dietary fibre in the upper GI tract: The importance of viscosity. Food Research International, 88, 234–238.CrossRefGoogle Scholar
  32. Mackie, A., Rigby, N., Harvey, P., & Bajka, B. (2016b). Increasing dietary oat fibre decreases the permeability of intestinal mucus. Journal of Functional Foods, 26, 418–427.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mandalari, G., Merali, Z., Ryden, P., Chessa, S., Bisignano, C., Barreca, D., Bellocco, E., Lagana, G., Faulks, R. M., & Waldron, K. W. (2018). Durum wheat particle size affects starch and protein digestion in vitro. European Journal of Nutrition, 57, 319–325.PubMedCrossRefGoogle Scholar
  34. Marlett, J. A., & Fischer, M. H. (2002). A poorly fermented gel from psyllium seed husk increases excreta moisture and bile acid excretion in rats. Journal of Nutrition, 132, 2638–2643.PubMedCrossRefGoogle Scholar
  35. Mishra, S., & Monro, J. (2012). Kiwifruit remnants from digestion in vitro have functional attributes of potential importance to health. Food Chemistry, 135, 2188–2194.PubMedCrossRefGoogle Scholar
  36. Mishra, S., Edwards, H., Hedderley, D., Podd, J., & Monro, J. (2017). Kiwifruit non-sugar components reduce glycaemic response to co-ingested cereal in humans. Nutrients, 9, E1195.PubMedCrossRefGoogle Scholar
  37. Mishra, S., Monro, J., & Hedderley, D. (2008). Effect of processing on slowly digestible starch and resistant starch in potato. Starch-Starke, 60, 500–507.CrossRefGoogle Scholar
  38. Monro, J. A. (2000). Faecal bulking index: A physiological basis for dietary management of bulk in the distal colon. Asia Pacific Journal of Clinical Nutrition, 9, 74–81.PubMedCrossRefGoogle Scholar
  39. Monro, J. A. (2001). Wheat bran equivalents based on faecal bulking indices for dietary management of faecal bulk. Asia Pacific Journal of Clinical Nutrition, 10, 242–248.PubMedCrossRefGoogle Scholar
  40. Monro, J. A. (2004). Virtual food components: Functional food effects expressed as food components. European Journal of Clinical Nutrition, 58, 219–230.PubMedCrossRefGoogle Scholar
  41. Monro, J. A., & Mishra, S. (2010). Digestion-resistant remnants of vegetable vascular and parenchyma tissues differ in their effects in the large bowel of rats. Food Digestion, 1, 47–56.CrossRefGoogle Scholar
  42. Monro, J., & Mishra, S. (2009). Nutritional value of potatoes: Digestibility, glycemic index, and glycemic impact. In L. Kaur & J. Singh (Eds.), Advances in potato chemistry and technology. Burlington: Academic Press.Google Scholar
  43. Monro, J., Mishra, S., Redman, C., Somerfield, S., & Ng, J. (2016). Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food & Function, 7, 2645–2654.CrossRefGoogle Scholar
  44. Morita, T., Kasaoka, S., Hase, K., & Kiriyama, S. (1999). Psyllium shifts the fermentation site of high-amylose cornstarch toward the distal colon and increases fecal butyrate concentration in rats. Journal of Nutrition, 129, 2081–2087.PubMedCrossRefGoogle Scholar
  45. Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Basle, A., Gray, J., Venditto, I., Briggs, J., Zhang, X., Labourel, A., Terrapon, N., Buffetto, F., Nepogodiev, S., Xiao, Y., Field, R. A., Zhu, Y., O'Neill, M. A., Urbanowicz, B. R., York, W. S., Davies, G. J., Wade Abbott, D., Ralet, M.-C., Martens, E. C., Henrissat, B., & Harry J. Giilbert. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 544, 65, 548.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Olausson, E. A., Alpsten, M., Larsson, A., Mattsson, H., Andersson, H., & Attvall, S. (2008). Small particle size of a solid meal increases gastric emptying and late postprandial glycaemic response in diabetic subjects with gastroparesis. Diabetes Research and Clinical Practice, 80, 231–237.PubMedCrossRefGoogle Scholar
  47. Palit, S., Lunniss, P. J., & Mark Scott, S. (2012). The physiology of human defecation. Digestive Diseases and Sciences, 57, 1445–1464.PubMedCrossRefGoogle Scholar
  48. Priyadarshini, M., Kotlo, K. U., Dudeja, P. K., & Layden, B. T. (2018). Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Comprehensive Physiology, 8, 1091–1115.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ranawana, V., Monro, J. A., Mishra, S., & Henry, C. J. K. (2010). Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutrition Research, 30, 246–254.PubMedCrossRefGoogle Scholar
  50. Robertson, J. A., Ryden, P., Botham, R. L., Reading, S., Gibson, G., & Ring, S. G. (2001). Structural properties of diet-derived polysaccharides and their influence on butyrate production during fermentation. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology, 34, 567–573.CrossRefGoogle Scholar
  51. Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch – a review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.CrossRefGoogle Scholar
  52. Scazzina, F., Siebenhandl-Ehn, S., & Pellegrini, N. (2013). The effect of dietary fibre on reducing the glycaemic index of bread. British Journal of Nutrition, 109, 1163–1174.PubMedCrossRefGoogle Scholar
  53. Seal, C. J., & Brownlee, I. A. (2015). Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proceedings of the Nutrition Society, 74, 313–319.PubMedCrossRefGoogle Scholar
  54. Stephen, A. M., Champ, M. M. J., Cloran, S. J., Fleith, M., van Lieshout, L., Mejborn, H., & Burley, V. J. (2017). Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30, 149–190.PubMedCrossRefGoogle Scholar
  55. Svihus, B., & Hervik, A. K. (2016). Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: A review. Starch-Starke, 68, 302–313.CrossRefGoogle Scholar
  56. Takahashi, T., & Sakata, T. (2004). Viscous properties of pig cecal contents and the contribution of solid particles to viscosity. Nutrition, 20, 377–382.PubMedCrossRefGoogle Scholar
  57. Talley, N. J. (2004a). Definitions, epidemiology, and impact of chronic constipation. Reviews in Gastroenterological Disorders, 4(Suppl 2), S3–S10.PubMedGoogle Scholar
  58. Talley, N. J. (2004b). Management of chronic constipation. Reviews in Gastroenterological Disorders, 4, 18–24.PubMedGoogle Scholar
  59. Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.PubMedCrossRefGoogle Scholar
  60. Trowell, H. (1976). Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. American Journal of Clinical Nutrition, 29, 417–427.PubMedCrossRefGoogle Scholar
  61. van Craeyveld, V., Swennen, K., Dornez, E., van de Wiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., de Ketelaere, B., Broekaert, W. F., Delcour, J. A., & Courtin, C. M. (2008). Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. Journal of Nutrition, 138, 2348–2355.PubMedCrossRefGoogle Scholar
  62. Warren, F. J., Fukuma, N. M., Mikkelsen, D., Flanagan, B. M., Williams, B. A., Lisle, A. T., Cuiv, P. O., Morrison, M., & Gidley, M. J. (2018). Food starch structure impacts gut microbiome composition. mSphere, 3, e00086.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Whistler, R. L., & BeMiller, J. N. (1997). Carbohydrate chemistry for food scientists. St. Paul: Eagan Press.Google Scholar
  64. Zhang, B., Dhital, S., & Gidley, M. J. (2015). Densely packed matrices as rate determining features in starch hydrolysis. Trends in Food Science & Technology, 43, 18–31.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.New Zealand Institute for Plant & Food Research LimitedPalmerston NorthNew Zealand
  2. 2.Riddet Institute, Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations