Advertisement

Food Processing By-Products and Waste: Potential Applications as Emulsifiers and Stabilizers

  • Christos RitzoulisEmail author
  • Alexandros Pavlou
Chapter
  • 288 Downloads

Abstract

Processing and consuming a food material results in the rejection of a substantial percentage of its initial biomass. Focusing on plants, this rejected part can be in the form of skin and seeds, of unchosen crops or plant parts, of pomaces, or of unconsumed foodstuff, among other forms. Efforts to reclaim highly valuable additives in the form of thickeners or emulsifiers from such sources remain typically associated with the pectins produced by the relevant parts of apples and of some other fruits. A growing body of work exists, however, on the extraction, purification, and characterization of novel thickeners and, to an extent, of novel emulsifiers from other food processing by-products and from food waste. This chapter outlines the current state of the art in this field, focusing on the relation between the extraction procedures and the end products, the methodologies of purification and fractionation, aspects of the physicochemical characterization of the end products, and their applications. This is followed by a critical discussion on the future trends for the reclaim and use of novel green-label thickeners and emulsifiers from such sources and their dynamics against established market products.

Keywords

Food processing waste Emulsifier Extraction Waste valorization Emulsion 

References

  1. Alba, K., Ritzoulis, C., Georgiadis, N., & Kontogiorgos, V. (2013). Okra extracts as emulsifiers for acidic emulsions. Food Research International, 54, 1730–1737.CrossRefGoogle Scholar
  2. Alba, K., Sagis, L. M. C., & Kontogiorgos, V. (2016). Engineering of acidic O/W formulations with pectin. Colloids and Surfaces B: Biointerfaces, 145, 301–308.PubMedCrossRefGoogle Scholar
  3. Chen, Q., Hu, Z., Yao, F. Y. D., & Liang, H. (2016). Study of two–stage microwave extraction of essential oil and pectin from pomelo peels. LWT – Food Science and Technology, 66, 538–545.CrossRefGoogle Scholar
  4. Chung, C., Sher, A., Rousset, P., & McClements, D. J. (2017). Use of natural emulsifiers in model coffee creamers: Physical properties of quillaja saponin–stabilized emulsions. Food Hydrocolloids, 67, 111–119.CrossRefGoogle Scholar
  5. Coelho, E. M., Gomes, R. G., Machado, B. A. S., Oliveira, R. S., dos Santos Lima, M., de Azêvedo, L. C., & Guez, M. A. U. (2017). Passion fruit peel flour–technological properties and application in food products. Food Hydrocolloids, 62, 158–164.CrossRefGoogle Scholar
  6. Costa, A. L. R., Gomes, A., Tibolla, H., Menagalli, F. C., & Cunha, R. L. (2018). Cellulose nanofibers from banana peels as a Pickering emulsifier: High–energy emulsification processes. Carbohydrate Polymers, 194, 122–131.PubMedCrossRefGoogle Scholar
  7. de Morais Teixeira, E., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33, 63–66.CrossRefGoogle Scholar
  8. Dickinson, E., Ritzoulis, C., Yamamoto, Y., & Logan, H. (1999). Ostwald ripening of protein-stabilized emulsions: Effect of transglutaminase crosslinking. Colloids and Surfaces B: Biointefaces, 12, 139–146.CrossRefGoogle Scholar
  9. Filotheou, A., Ritzoulis, C., Avgidou, M., Kalogianni, E., Pavlou, A., & Panayiotou, C. (2015). Novel emulsifiers from olive processing solid waste. Food Hydrocolloids, 48, 274–281.CrossRefGoogle Scholar
  10. Georgiadis, N., Ritzoulis, C., Sioura, G., Kornezou, P., Vasiliadou, C., & Tsioptsias, C. (2011). Contribution of okra extracts to the stability and rheology of oil–in–water emulsions. Food Hydrocolloids, 25, 991–999.CrossRefGoogle Scholar
  11. Georgiadis, N., Ritzoulis, C., Charchari, E., Koukiotis, C., Tsioptsias, C., & Vasiliadou, C. (2012). Isolation, characterization and emulsion stabilizing properties of polysaccharides from orchid roots (salep). Food Hydrocolloids, 28, 68–74.CrossRefGoogle Scholar
  12. Gestranius, M., Stenius, P., Kontturi, E., Sjöblom, J., & Tammelin, T. (2017). Phase behaviour and droplet size of oil–in–water Pickering emulsions stabilised with plant–derived nanocellulosic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519, 60–70.CrossRefGoogle Scholar
  13. Gil-Ramirez, A., Salas-Veizaga, D. M., Grey, C., Karlsson, E. N., Rodriguez-Meizoso, I., & Linares-Pastén, J. A. (2018). Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Industrial Crops and Products, 121, 54–65.CrossRefGoogle Scholar
  14. Gould, J., Garcia-Garcia, G., & Wolf, B. (2017). Pickering particles prepared from food waste. Materials, 9, 791.CrossRefGoogle Scholar
  15. Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100.PubMedCrossRefGoogle Scholar
  16. Habibi, Y., Mahrouz, M., & Vignon, M. R. (2009). Microfibrillated cellulose from the peel of prickly pear fruits. Food Chemistry, 115, 423–429.CrossRefGoogle Scholar
  17. Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59–65.PubMedCrossRefGoogle Scholar
  18. Jablonský, M., Škulcová, A., Malvis, A., & Šima, J. (2018). Extraction of value–added components from food industry based and agro–forest biowastes by deep eutectic solvents. Journal of Biotechnology, 282, 46–66.PubMedCrossRefGoogle Scholar
  19. Jafari, F., Khodaiyan, F., Kiani, H., & Hosseini, S. S. (2017). Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers, 157, 1315–1322.PubMedCrossRefGoogle Scholar
  20. Kashiri, N., & Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 106, 1023–1031.CrossRefGoogle Scholar
  21. Khawas, P., & Deka, S. C. (2016). Isolation and characterization of cellulose nanofibers from culinary banana peel using high–intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers, 137, 608–616.PubMedCrossRefGoogle Scholar
  22. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., & Liu, Y. (2012). Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers, 90, 1609–1613.PubMedCrossRefGoogle Scholar
  23. Liu, H., Liu, T., Fan, H., Gou, M., Li, G., Ren, H., Wang, D., & Cheng, Z. (2018). Corn lecithin for injection from deoiled corn germ: Extraction, composition, and emulsifying properties. European Journal of Lipid Science and Technology, 120, 1700288.CrossRefGoogle Scholar
  24. Ma, F., Zhang, Y., Yao, Y., Wen, Y., Hu, W., Zhang, J., Liu, X., Bell, A. E., & Tikkanen-Kaukanen, C. (2017). Chemical components and emulsification properties of mucilage from Dioscorea opposita Thunb. Food Chemistry, 228, 315–322.PubMedCrossRefGoogle Scholar
  25. Malik, M. A., Sharma, H. K., & Saini, C. S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511–519.PubMedCrossRefGoogle Scholar
  26. Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčićb, M., & Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by–products: Ultrasound–, microwaves–, and enzyme–assisted extraction. Trends in Food Process and Technology, 72, 28–37.CrossRefGoogle Scholar
  27. Naik, M. K., Naik, S. N., & Mohanty, S. (2014). Enzymatic glycerolysis for conversion of sunflower oil to food-based emulsifiers. Catalysis Today, 237, 145–149.Google Scholar
  28. Pavlou, A., Ritzoulis, C., Filotheou, A., & Panayiotou, C. (2016). Emulsifiers extracted from winery waste. Waste and Biomass Valorization, 7, 533–542.CrossRefGoogle Scholar
  29. Pelissari, F. M., do Amaral Sobral, P. J., & Menegalli, F. C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 21, 417–432.CrossRefGoogle Scholar
  30. Pereira, P. H. F., Oliveira, T. Í. S., Rosac, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldrona, K. W., & Azeredoc, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379.PubMedCrossRefGoogle Scholar
  31. Porto, B. C., & Cristianini, M. (2014). Evaluation of cashew tree gum (Anacardium occidentale L.). LWT – Food Science and Technology, 59, 1325–1331.CrossRefGoogle Scholar
  32. Porto, B. C., & Cristianini, M. (2018). Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree nut gum. Carbohydrate Polymers, 186, 350–357.PubMedCrossRefGoogle Scholar
  33. Raji, Z., Khodaiyana, F., Rezaei, K., Kiani, H., & Hosseini, S. S. (2017). Extraction optimization and physicochemical properties of pectin from melon peel. International Journal of Biological Macromolecules, 98, 709–716.PubMedCrossRefGoogle Scholar
  34. Ritzoulis, C., Marini, E., Aslanidou, A., Georgiadis, N., Karayannakidis, P. D., Koukiotis, C., Filotheou, A., Lousinian, S., & Tzimpilis, E. (2014). Hydrocolloids from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloids, 42, 178–186.CrossRefGoogle Scholar
  35. Rodsamran, P., & Sothornvit, R. (2018). Physicochemical and functional properties of protein concentrate from byproduct of coconut processing. Food Chemistry, 241, 364–371.PubMedCrossRefGoogle Scholar
  36. Sarkar, A., Kamaruddin, H., Bentley, A., & Wang, S. (2017). Emulsion stabilization by tomato seed protein isolate: Influence of pH, ionic strength and thermal treatment. Food Hydrocolloids, 57, 60–68.Google Scholar
  37. Soni, B., Hassan, E., Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581–589.PubMedCrossRefGoogle Scholar
  38. Takenaga, F., Matsuyama, K., Abe, S., Torii, Y., & Itoh, S. (2008). Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan. Journal of Oleo Science, 57, 591–597.PubMedCrossRefGoogle Scholar
  39. Temenouga, V., Charitidis, T., Avgidou, M., Karayannakidis, P. D., Dimopoulou, M., Kalogianni, E. P., Panayiotou, C., & Ritzoulis, C. (2016). Novel emulsifiers as products from internal Maillard reactions in okra hydrocolloid mucilage. Food Hydrocolloids, 52, 972–981.CrossRefGoogle Scholar
  40. Thaipanit, S., & Anprung, P. (2016). Physicochemical and emulsion properties of edible protein concentrate from coconut (Cocos nucifera L.) processing by–products and the influence of heat treatment. Food Hydrocolloids, 72, 756–765.CrossRefGoogle Scholar
  41. Thaipanit, S., Schleining, G., & Anprung, P. (2016). Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil–in–water emulsions. Food Hydrocolloids, 60, 252–264.CrossRefGoogle Scholar
  42. Thirugnanasambandham, K., Sivakumar, V., & Maran, J. P. (2014). Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydrate Polymers, 112, 622–626.PubMedCrossRefGoogle Scholar
  43. Tibolla, H., Pelissari, F. M., & Menegalli, F. C. (2014). Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT – Food Science and Technology, 59(2), 1311–1318.CrossRefGoogle Scholar
  44. Wang, W., Du, G., Li, C., Zhang, H., Long, Y., & Ni, Y. (2016a). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151, 1–8.PubMedCrossRefGoogle Scholar
  45. Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X., & Liu, D. (2016b). Characterization of pectin from grapefruit peel: A comparison of ultrasound–assisted and conventional heating extractions. Food Hydrocolloids, 61, 730–739.CrossRefGoogle Scholar
  46. Wang, W., Wei, X., Li, J., Wang, F., Wang, Q., Zhang, Y., & Kong, L. (2017). Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Industrial Crops and Products, 104, 237–241.CrossRefGoogle Scholar
  47. Wee, M. S. M., Matia-Merino, L., & Goh, K. K. T. (2015). Time– and shear history–dependence of the rheological properties of a water–soluble extract from the fronds of the black tree fern, Cyathea medullaris. Journal of Rheology, 59, 365–376.CrossRefGoogle Scholar
  48. Winuprasith, T., & Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32, 383–394.CrossRefGoogle Scholar
  49. Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science, 2018, 1–25.Google Scholar
  50. Yadav, M. P., Hicks, K. B., Johnston, D. B., Hotchkiss, A. T., Jr., Chau, H. K., & Hanah, K. (2016). Production of bio–based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls. Food Hydrocolloids, 53, 125–133.CrossRefGoogle Scholar
  51. Zaidel, D. N. A., Rashid, J. M., Hamidon, N. H., Salleh, L. M., & Kassim, A. S. M. (2017). Extraction and characterisation of pectin from dragon fruit (hylocereus polyrhizus) peels. Chemical Engineering Transactions, 56, 805–810.Google Scholar
  52. Züge, L. C. B., Silva, V. R., Hamerski, F., Ribani, M., Gimenes, M. L., & Scheer, A. P. (2015). Emulsifying properties of sericin obtained from hot water degumming process. Journal of Food Process Engineering, 40(1), e12267.CrossRefGoogle Scholar
  53. Züge, L. C. B., Maieves, H. A., Silveira, J. L. M., da Silva, V. R., & Scheer, A. P. (2017). Use of avocado lipids as emulsifier. LWT – Food Science and Technology, 79, 42–51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Food TechnologyATEI of ThessalonikiThessalonikiGreece
  2. 2.School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
  3. 3.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations