Skip to main content

Distributed Real-Time Data Aggregation Scheduling in Duty-Cycled Multi-hop Sensor Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11604))

Abstract

Wireless sensor network (WSN) systems often need to support real time periodic queries of physical environments. In this work, we focus on periodic queries with sufficiently long time horizon in duty-cycled sensor networks. For each periodic query issued by a control center in a WSN, after the source sensors produced the sensory data, the data are to be sent to the sink via multi-hop data aggregation timely in a periodic fashion. To this end, we propose efficient and effective data aggregation algorithms subject to quality of service constraints such as deadline requirements and interference constraints. We decompose these into three sequential operations: (1) aggregation tree construction (2) node and link-level scheduling and (3) packet scheduling. Inspired by the scheduling algorithms, we identify both sufficient conditions and necessary conditions for scheduling multiple queries. The schedulability analysis under various interference models demonstrate that the proposed algorithms achieve an approximate proportion of the maximum possible load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alicherry, M., Bhatia, R., Li, L.: Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks. In: ACM MobiCom , p. 72 (2005)

    Google Scholar 

  2. Chen, K., Gao, H., Cai, Z., Chen, Q., Li, J.: Distributed energy-adaptive aggregation scheduling with coverage guarantee for battery-free wireless sensor networks. In: IEEE INFOCOM (2019)

    Google Scholar 

  3. Chen, Q., Gao, H., Cai, Z., Cheng, L., Li, J.: Energy-collision aware data aggregation scheduling for energy harvesting sensor networks. In: IEEE INFOCOM, pp. 117–125 (2018)

    Google Scholar 

  4. Chen, Q., Gao, H., Cheng, S., Li, J., Cai, Z. Distributed non-structure based data aggregation for duty-cycle wireless sensor networks. In: IEEE INFOCOM, pp. 1–9 (2017)

    Google Scholar 

  5. Chipara, O., Lu, C., Roman, G.: Real-time query scheduling for wireless sensor networks. In: IEEE RTSS (2007)

    Google Scholar 

  6. Du, D.-Z., Wan, P.-J.: Weighted CDS in unit disk graph. In: Du, D.-Z., Wan, P.-J. (eds.) Connected Dominating Set: Theory and Applications, pp. 77–104. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5242-3_5

    Google Scholar 

  7. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)

    Google Scholar 

  8. Ha, N.P.K., Zalyubovskiy, V., Choo, H.: Delay-efficient data aggregation scheduling in duty-cycled wireless sensor networks. In: ACM RACS, pp. 203–208 (2012)

    Google Scholar 

  9. He, Z., Cai, Z., Cheng, S., Wang, X.: Approximate aggregation for tracking quantiles and range countings in wireless sensor networks. Theor. Comput. Sci. 607, 381–390 (2015)

    Google Scholar 

  10. Jiao, X., Lou, W., Feng, X., Wang, X., Yang, L., Chen, G.: Delay efficient data aggregation scheduling in multi-channel duty-cycled WSNs. In: IEEE MASS, pp. 326–334 (2018)

    Google Scholar 

  11. Jiao, X., Lou, W., Wang, X., Cao, J., Xu, M., Zhou, X.: Data aggregation scheduling in uncoordinated duty-cycled wireless sensor networks under protocol interference model. Ad Hoc Sens. Wirel. Netw. 15(2–4), 315–338 (2012)

    Google Scholar 

  12. Li, J., Cheng, S., Cai, Z., Yu, J., Wang, C., Li, Y.: Approximate holistic aggregation in wireless sensor networks. ACM Trans. Sens. Netw. 13(2), 11 (2017)

    Google Scholar 

  13. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)

    Google Scholar 

  14. Liu, J.: Real-Time Systems. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  15. Shih, W., Liu, J., Liu, C.: Modified rate-monotonic algorithm for scheduling periodic jobs with deferred deadlines. IEEE Trans. Softw. Eng. 19(12), 1171–1179 (1993)

    Google Scholar 

  16. Wan, P.-J., Huang, S.C.-H., Wang, L., Wan, Z., Jia, X.: Minimum-latency aggregation scheduling in multihop wireless networks. In: ACM MobiHoc (2009)

    Google Scholar 

  17. Xiao, S., Huang, J., Pan, L., Cheng, Y., Liu, J.: On centralized and distributed algorithms for minimizing data aggregation time in duty-cycled wireless sensor networks. Wirel. Netw. 20, 1729–1741 (2014)

    Google Scholar 

  18. Xu, X., Cao, J., Wan, P.-J.: Fast group communication scheduling in duty-cycled multihop wireless sensor networks. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 197–205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31869-6_17

    Google Scholar 

  19. Xu, X., Li, X.-Y., Song, M.: Distributed scheduling for real-time data collection in wireless sensor networks. In: IEEE GLOBECOM, pp. 426–431 (2013)

    Google Scholar 

  20. Xu, X., Li, X.-Y., Song, M.: Efficient aggregation scheduling in multihop wireless sensor networks with sinr constraints. IEEE Trans. Mob. Comput. 12(12), 2518–2528 (2013)

    Google Scholar 

  21. Xu, X., Li, X.-Y., Wan, P.-J., Tang, S.: Efficient scheduling for periodic aggregation queries in multihop sensor networks. IEEE/ACM Trans. Netw. 20(3), 690–698 (2012)

    Google Scholar 

  22. Xu, X., Song, M.: Delay efficient real-time multicast scheduling in multi-hop wireless sensor networks. In: IEEE GLOBECOM, pp. 1–6 (2015)

    Google Scholar 

  23. Yan, X., Du, H., Ye, Q., Song, G.: Minimum-delay data aggregation schedule in duty-cycled sensor networks. In: Yang, Q., Yu, W., Challal, Y. (eds.) WASA 2016. LNCS, vol. 9798, pp. 305–317. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42836-9_28

    Google Scholar 

  24. Yu, B., Li, J.-Z.: Minimum-time aggregation scheduling in duty-cycled wireless sensor networks. J. Comput. Sci. Technol. 26(6), 962–970 (2011)

    Google Scholar 

  25. Yu, D., Ning, L., Zou, Y., Yu, J., Cheng, X., Lau, F.C.: Distributed spanner construction with physical interference: constant stretch and linear sparseness. IEEE/ACM Trans. Netw. 25(4), 2138–2151 (2017)

    Google Scholar 

  26. Yu, J., Huang, B., Cheng, X., Atiquzzaman, M.: Shortest link scheduling algorithms in wireless networks under the sinr model. IEEE Trans. Veh. Technol. 66(3), 2643–2657 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Zhao, Y., Zhao, D., Yang, L., Bakiras, S. (2019). Distributed Real-Time Data Aggregation Scheduling in Duty-Cycled Multi-hop Sensor Networks. In: Biagioni, E., Zheng, Y., Cheng, S. (eds) Wireless Algorithms, Systems, and Applications. WASA 2019. Lecture Notes in Computer Science(), vol 11604. Springer, Cham. https://doi.org/10.1007/978-3-030-23597-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23597-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23596-3

  • Online ISBN: 978-3-030-23597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics