Advertisement

Stepped Warm-Up–The Progressive Interaction Approach for Human-Robot Interaction in Public

  • Min ZhaoEmail author
  • Dan Li
  • Zhun Wu
  • Shiyan Li
  • Xiaonan Zhang
  • Lu Ye
  • Guangfu Zhou
  • Daisong Guan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11584)

Abstract

Initiating interaction is one of the most basic functions of service robots, and it has a vital impact on the subsequent interaction process. In the present study, we proposed a brand-new approach to initiate interaction—the progressive interaction approach. Specifically, robots actively send social cues to potential users in a progressively enhancing manner. Based on the concept of this approach, we modeled the behavior of a robot named Xiaodu, and further validated the practical benefits of this approach in an experimental study, in which participants were asked to rate their experience after interacting with Xiaodu with different initiating strategies. The findings suggested that compared to the reactive approach, the progressive interaction approach led to stronger positive emotions (self-reported) and was perceived to be more natural and friendly. Participants also reported higher affection and higher interaction intention towards the progressive interaction approach. The study has some implications for designing robots’ behavior in the interaction initiating process.

Keywords

Human-Robot Interaction (HRI) Initiating interaction Progressive interaction approach Reactive approach Facial expression Face recognition Attracting attention 

References

  1. 1.
    Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Interactive humanoid robots for a science museum. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, pp. 305–312. IEEE, New York (2006)Google Scholar
  2. 2.
    Thrun, S., et al.: MINERVA: a second-generation museum tour-guide robot. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, ICRA 1999, pp. 1999–2005. IEEE, New York (1999)Google Scholar
  3. 3.
    Ramírez, O., Khambhaita, H., Chatila, R., Chetouani, M., Alami, R.: Robots learning how and where to approach people. In: Proceedings of 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 347–353. IEEE, New York (2016)Google Scholar
  4. 4.
    Hayashi, K., et al.: Humanoid robots as a passive-social medium: a field experiment at a train station. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, HRI 2007, pp. 137–144. IEEE, New York (2007)Google Scholar
  5. 5.
    Kanda, T., Glas, D.F., Shiomi, M., Ishiguro, H., Hagita, N.: Who will be the customer?: A social robot that anticipates people’s behavior from their trajectories. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp 2008, pp. 380–389. ACM, New York (2008) 
Google Scholar
  6. 6.
    Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., Hagita, N.: How to approach humans? Strategies for social robots to initiate interaction. In: Proceedings of the 4th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2009, pp. 109–116. IEEE, New York (2009)Google Scholar
  7. 7.
    Mead, R., Atrash, A., Matarić, M.J.: Automated proxemic feature extraction and behavior recognition: applications in human-robot interaction. Int. J. Soc. Robot. 5(3), 367–378 (2013)CrossRefGoogle Scholar
  8. 8.
    Kato, Y., Kanda, T., Ishiguro, H.: May I help you?: Design of human-like polite approaching behavior. In: Proceedings of the 10th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2015, pp. 35–42. ACM, New York (2015)Google Scholar
  9. 9.
    Rashed, M.G.: Observing people’s behaviors in public spaces for initiating proactive human-robot interaction by social robots. Ph.D. Dissertation (2016)Google Scholar
  10. 10.
    Rashed, M.G., Das, D., Kobayashi, Y., Kuno, Y.: A study on proactive methods for initiating interaction with human by social robots. Asian J. Converg. Technol. 4(2) (2018). ISSN: 2350-1146Google Scholar
  11. 11.
    Yamazaki, K., Kawashima, M.: Prior-to-request and request behaviors within elderly day care: implications for developing service robots for use in multiparty settings. In: Bannon, L.J., Wagner, I., Gutwin, C., Harper, R.H.R., Schmidt, K. (eds.) ECSCW 2007, pp. 61–78. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-1-84800-031-5_4CrossRefGoogle Scholar
  12. 12.
    Schulte, J., Rosenberg, C., Thrun, S.: Spontaneous, short-term interaction with mobile robots. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, ICRA 1999, pp. 658–663. IEEE, New York (1999)Google Scholar
  13. 13.
    Hayashi, K., et al.: Humanoid robots as a passive-social medium - a field experiment at a train station. In: Proceedings of the 2nd ACM/IEEE International Conference on Human-Robot Interaction, HRI 2007, pp. 137–144. IEEE, New York (2007)Google Scholar
  14. 14.
    Peters, C.: Evaluating perception of interaction initiation in virtual environments using humanoid agents. In: Proceedings of the 17th European Conference on Artificial Intelligence, pp. 46–50. IOS Press, Amsterdam (2006)Google Scholar
  15. 15.
    Finke, M., Koay, K., Dautenhahn, K., Nehaniv, C.: Hey, I’m over here – How can a robot attract people’s attention? In: Proceedings of 2005 IEEE International Workshop on Robot and Human Interactive Communication, pp. 7–12. IEEE, New York (2005)Google Scholar
  16. 16.
    Buss, M., et al.: Towards proactive human-robot interaction in human environments. In: Proceedings of the 2nd International Conference on Cognitive Infocommunications, pp. 1–6. IEEE, New York (2011)Google Scholar
  17. 17.
    Scheflen, A.E.: Body Language and Social Order. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  18. 18.
    Kendon, A.: Conducting Interaction: Patterns of Behavior in Focused Encounters. Cambridge University Press, Cambridge (1990)Google Scholar
  19. 19.
    Clark, H.H.: Using Language. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  20. 20.
    Goffman, E.: Behavior in Public Place: Notes on the Social Organization of Gatherings. The Free Press, New York (1963)Google Scholar
  21. 21.
    Hall, E.T.: The Hidden Dimension. Anchor Books, New York (1969)Google Scholar
  22. 22.
    Argyle, M., Cook, M.: Gaze and Mutual Gaze. Cambridge University Press, Cambridge (1976)Google Scholar
  23. 23.
    Kampe, K.K.W., Frith, C.D., Frith, U.: “Hey John”: signals conveying communicative intention toward the self activate brain regions associated with “mentalizing”, regardless of modality. J. Neurosci. 23(12), 5258–5263 (2003)CrossRefGoogle Scholar
  24. 24.
    Hall, E.T.: A system for the notation of proxemic behavior. Am. Anthropol. 65(5), 1003–1026 (1963)CrossRefGoogle Scholar
  25. 25.
    Lambert, D.: Body Language. Harper Collins, London (2004)Google Scholar
  26. 26.
    Hall, E.T.: Proxemics. Curr. Anthropol. 9(2–3), 83–108 (1968)CrossRefGoogle Scholar
  27. 27.
    Sommer, R.: Personal Space: The Behavioral Basis of Design. Prentice Hall, Englewood Cliffs (1969)Google Scholar
  28. 28.
    Kendon, A.: Features of the structural analysis of human communication behavior. In: von Raffler-Engel, W. (ed.) Aspects of Nonverbal Communication, pp. 29–43 (1980)Google Scholar
  29. 29.
    Dautenhahn, K.: Socially intelligent robots: dimensions of human robot interaction. Philos. Trans. R. Soc. B Biol. Sci. 362(1480), 679–704 (2007)CrossRefGoogle Scholar
  30. 30.
    Breazeal, C.: Social interactions in HRI: the robot view. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(2), 181–186 (2004)CrossRefGoogle Scholar
  31. 31.
    Imai, M., Ono T., Ishiguro, H.: Physical relation and expression: joint attention for human-robot interaction. In: Proceedings of the 10th IEEE International Workshop on Robot and Human Communication, RO-MAN 2001, pp. 512–517. IEEE, New York (2001)Google Scholar
  32. 32.
    Bruce, A., Nourbakhsh, I., Simmons, R.: The role of expressiveness and attention in human-robot interaction. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 4138–4142. IEEE, New York (2011)Google Scholar
  33. 33.
    Torta, E., van Heumen, J., Cuijpers, Raymond H., Juola, J.F.: How can a robot attract the attention of its human partner? A comparative study over different modalities for attracting attention. In: Ge, S.S., Khatib, O., Cabibihan, J.-J., Simmons, R., Williams, M.-A. (eds.) ICSR 2012. LNCS (LNAI), vol. 7621, pp. 288–297. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34103-8_29CrossRefGoogle Scholar
  34. 34.
    Thrum, S., et al.: Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Int. J. Robot. Res. 19(11), 972–999 (2000)CrossRefGoogle Scholar
  35. 35.
    Mutlu, B., Kanda, T., Forlizzi, J., Hodgins, J., Ishiguro, H.: Conversational gaze mechanisms for humanlike robots. J. ACM Trans. Interact. Intell. Syst. 1(2), 12:1–12:33 (2012)Google Scholar
  36. 36.
    Mead, R., Mataric, M.J.: Robot have need too: how and why people adapt their proxemic behavior to improve robot social signal understanding. J. Hum. Robot. Interact. 5(2), 48–68 (2016)CrossRefGoogle Scholar
  37. 37.
    Huttenrauch, H., Eklundh, K.S., Green, A., Topp, E.: Investigating spatial relationships in human-robot Interaction. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5052–5059. IEEE, New York (2006)Google Scholar
  38. 38.
    Silvera-Tawil, D., Rye, D., Velonaki, M.: Human-robot interaction with humanoid Diamandini using an open experimentation method. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, pp. 425–430. IEEE, New York (2015)Google Scholar
  39. 39.
    Walters, M.L., et al.: Close encounters: spatial distances between people and a robot of mechanistic appearance. In: Proceedings of 5th IEEE-RAS International Conference on Humanoid Robots, pp. 450–455. IEEE, New York (2005)Google Scholar
  40. 40.
    Walters, M.L., Dautenhahn, K., Woods, S.N., Koay, K.L., Te Boekhorst, R., Lee, D.: Exploratory studies on social spaces between humans and a mechanical-looking robot. Connect. Sci. 18(4), 429–439 (2006)CrossRefGoogle Scholar
  41. 41.
    Sardar, A., Joosse, M., Weiss, A., Evers, V.: Don’t stand so close to me: users’ attitudinal and behavioral responses to personal space invasion by robots. In: Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2012, pp. 229–230. IEEE, New York (2012)Google Scholar
  42. 42.
    Dautenhahn, K., et al.: How may I serve you?: A robot companion approaching a seated person in a helping context. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, pp. 172–179. IEEE, New York (2006)Google Scholar
  43. 43.
    Walters, M.L., Dautenhahn, K., Woods, S.N., Koay, K.L.: Robotic etiquette: results from user studies involving a fetch and carry task. In: Proceedings of the 2nd ACM/IEEE International Conference on Human-Robot Interaction, HRI 2007, pp. 317–324. IEEE, New York (2007)Google Scholar
  44. 44.
    Ball, A., Rye, D., Silvera-Tawil, D., Velonaki, M.: Group vs. individual comfort when a robot approaches. In: Tapus, A., André, E., Martin, J.C., Ferland, F., Ammi, M. (eds.) ICSR 2015. LNCS (LNAI), vol. 9388, pp. 41–50. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25554-5_5CrossRefGoogle Scholar
  45. 45.
    Steinfeld, A., Jenkins O.C., Scassellati, B.: The Oz of Wizard: simulating the human for interaction research. In: Proceedings of the 4th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2009, pp. 101–107. IEEE, New York (2009)Google Scholar
  46. 46.
  47. 47.
    Hutchison, A., Gerstein, L.: Emotion recognition, emotion expression, and cultural display rules: implications for counseling. J. Asia Pac. Couns. 7(1), 19–35 (2017)CrossRefGoogle Scholar
  48. 48.
    Yan, W.: Facial expressions and differences between Chinese and Western cultures. Wen Shi Zi Liao 9(1), 97–98 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Min Zhao
    • 1
    Email author
  • Dan Li
    • 1
  • Zhun Wu
    • 1
  • Shiyan Li
    • 1
  • Xiaonan Zhang
    • 2
  • Lu Ye
    • 2
  • Guangfu Zhou
    • 2
  • Daisong Guan
    • 1
  1. 1.Baidu AI Interaction Design LabBeijingChina
  2. 2.Baidu Natural Language Processing DepartmentBeijingChina

Personalised recommendations