Advertisement

User-Centered Gestures for Mobile Phones: Exploring a Method to Evaluate User Gestures for UX Designers

  • Ariane BeauchesneEmail author
  • Sylvain Sénécal
  • Marc Fredette
  • Shang Lin Chen
  • Bertrand Demolin
  • Marie-Laure Di Fabio
  • Pierre-Majorique Léger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11584)

Abstract

The objective of this paper is to explore how users react to certain gestures (e.g., swipe, scroll, or tap) for certain use cases. More specifically, the goal is to explore and suggest guidelines to user experience (UX) designers when choosing gestures for specific use cases on a smartphone application. Building on the Task-technology fit theory, we are specifically interested in the degree of alignment between gestures and each mobile use case. We hypothesize that some gestures are better aligned with certain use cases because they require less cognitive effort than others. In other words, certain gestures are likely to become so natural for users that they do not have to consciously invest effort to accomplish these gestures. Likewise, we hypothesize that the emotional valence of gestures will be affected by the use case. To attain this objective, a lab-experiment was conducted with 20 participants, where cognitive load and emotional valence were measured. Results suggest that the combination of gestures and use cases have an impact on the user cognitive load and valence. These findings contribute to human-computer interaction (HCI) research by providing insights to help user experience (UX) designers select appropriate gestures.

Keywords

Mobile applications design Usability methods and tools Guidelines User experience Cognitive load 

References

  1. 1.
    Wigdor, D., Wixon, D.: Brave NUI World. Elsevier Science Designing Natural User Interfaces for Touch and Gesture. Elsevier, Saint-Louis (2011)Google Scholar
  2. 2.
    Ferreira, B., Silva, W., Oliveira, E., Conte, T.: Designing Personas with Empathy Map, pp. 501–505 (2015).  https://doi.org/10.18293/seke2015-152
  3. 3.
    Garrett, J.J.: The Elements of User Experience User-Centered Design for the Web and Beyond (2010)Google Scholar
  4. 4.
    International Standard: Systems and Software Engineering - System and Software Quality Requirements and Evaluation (SQuaRE) - Common Industry Format (CIF) for Usability - Evaluation Report (2016)Google Scholar
  5. 5.
    Scapin, D.L., Bastien, J.M.C.: Ergonomic criteria for evaluating the ergonomic quality of interactive systems. Behav. Inf. Technol. 16, 220–231 (1997).  https://doi.org/10.1080/014492997119806CrossRefGoogle Scholar
  6. 6.
    Walker, M., Takayama, L., Landay, J.A.: High-fidelity or low-fidelity, paper or computer? choosing attributes when testing web prototypes. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, pp. 661–665 (2002).  https://doi.org/10.1177/154193120204600513CrossRefGoogle Scholar
  7. 7.
    Snyder, C.: Paper Prototyping: the Fast and Easy Way to Design and Refine User Interfaces. Elveiser, San Francisco (2003)Google Scholar
  8. 8.
    Svanaes, D., Seland, G.: Putting the users center stage: role playing and low-fi prototyping enable end users to design mobile systems. In: Proceedings of SIGCHI Conference on Human Factors Computing Systems, vol. 6, pp. 479–486 (2004).  https://doi.org/10.1145/985692.985753
  9. 9.
    Bano, M., Zowghi, D.: A systematic review on the relationship between user involvement and system success. Inf. Softw. Technol. 58, 148–169 (2015).  https://doi.org/10.1016/j.infsof.2014.06.011CrossRefGoogle Scholar
  10. 10.
    Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q. 19, 213 (1995).  https://doi.org/10.2307/249689CrossRefGoogle Scholar
  11. 11.
    Lin, T.C., Huang, C.C.: Understanding knowledge management system usage antecedents: an integration of social cognitive theory and task technology fit. Inf. Manag. 45, 410–417 (2008).  https://doi.org/10.1016/j.im.2008.06.004CrossRefGoogle Scholar
  12. 12.
    Sundar, S.S., Bellur, S., Oh, J., Xu, Q., Jia, H.: User experience of on-screen interaction techniques: an experimental investigation of clicking, sliding, zooming, hovering, dragging, and flipping. Hum. Comput. Interact. 29, 109–152 (2014).  https://doi.org/10.1080/07370024.2013.789347CrossRefGoogle Scholar
  13. 13.
    Cockburn, A.: Structuring use cases with goals. Hum. Technol. 84121, 1–13 (1995)Google Scholar
  14. 14.
    Warr, A., Chi, E.H.: Swipe vs. scroll: web page switching on mobile browsers. In: Proceedings of SIGCHI Conference on Human Factors Computing System - CHI 2013, vol. 2171 (2013).  https://doi.org/10.1145/2470654.2481298
  15. 15.
    Choi, B.C.F., Kirshner, S.N., Wu, Y.: Swiping vs. scrolling in mobile shopping applications. In: Nah, F.F.-H.F.-H., Tan, C.-H. (eds.) HCIBGO 2016. LNCS, vol. 9751, pp. 177–188. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39396-4_16CrossRefGoogle Scholar
  16. 16.
    Villamor, C., Willi, D., Wroblewski, L.: Touch Gesture Reference Guide. Touch Gesture Ref. Guid. pp. 1–7 (2011)Google Scholar
  17. 17.
    Wobbrock, J.O., Forlizzi, J., Hudson, S.E., Myers, B.A.: WebThumb : Interaction Techniques for Small-Screen Browsers, vol. 4, pp. 205–208 (2002).  https://doi.org/10.1145/571985.572014
  18. 18.
    Dou, X., Sundar, S.S.: Power of the swipe: why mobile websites should add horizontal swiping to tapping, clicking, and scrolling interaction techniques. Int. J. Hum. Comput. Interact. 32, 352–362 (2016).  https://doi.org/10.1080/10447318.2016.1147902CrossRefGoogle Scholar
  19. 19.
    Leung, R., MacLean, K., Bertelsen, M.B., Saubhasik, M.: Evaluation of haptically augmented touchscreen GUI elements under cognitive load. In: Proceedings of the Ninth International Conference on Multimodal Interfaces - ICMI 2007, p. 374. ACM Press, New York (2007)Google Scholar
  20. 20.
    Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environments. In: Proceedings of 24th Annual Conference on Computer Graphics and Interactive Techniques- SIGGRAPH 1997, pp. 345–352 (1997).  https://doi.org/10.1145/258734.258878
  21. 21.
    Bargas-Avila, J., Hornbæk, K.: Old wine in new bottles or novel challenges? a critical analysis of empirical studies of user experience. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp. 2689–2698 (2011).  https://doi.org/10.1145/1978942.1979336
  22. 22.
    De Guinea, A.O., Titah, R., Léger, P.-M.: Explicit and implicit antecedents of users’ behavioral beliefs in information systems: a neuropsychological investigation. J. Manag. Inf. Syst. 30, 179–210 (2014).  https://doi.org/10.2753/MIS0742-1222300407CrossRefGoogle Scholar
  23. 23.
    Dirican, A.C., Göktürk, M.: Psychophysiological measures of human cognitive states applied in Human Computer Interaction. Procedia Comput. Sci. 3, 1361–1367 (2011).  https://doi.org/10.1016/j.procs.2011.01.016CrossRefGoogle Scholar
  24. 24.
    Mandryk, R.L., Inkpen, K.M., Calvert, T.W.: Using psychophysiological techniques to measure user experience with entertainment technologies. Behav. Inf. Technol. 25, 141–158 (2006).  https://doi.org/10.1080/01449290500331156CrossRefGoogle Scholar
  25. 25.
    Lourties, S., Léger, P., Sénécal, S., Fredette, M., Chen, S.L.: Testing the convergent validity of continuous self-perceived measurement systems: an exploratory study 10923, 132–144 (2018).  https://doi.org/10.1007/978-3-319-91716-0CrossRefGoogle Scholar
  26. 26.
    Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interact. Comput. 16, 857–878 (2004).  https://doi.org/10.1016/j.intcom.2004.08.001CrossRefGoogle Scholar
  27. 27.
    Wilson, G.M., Sasse, M.A.: Do users always know what’s good for them? utilising physiological responses to assess media quality. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Computers XIV—Usability or Else!, pp. 327–339. Springer, London (2006).  https://doi.org/10.1007/978-1-4471-0515-2_22CrossRefGoogle Scholar
  28. 28.
    Vicente, K.J., Thornton, D.C., Moray, N.: Spectral analysis of sinus arrhythmia: a measure of mental effort. Hum. Factors 171–182 (1987).  https://doi.org/10.1177/001872088702900205CrossRefGoogle Scholar
  29. 29.
    Adams, R.: Decision and stress: cognition and e-accessibility in the information workplace. Univers. Access Inf. Soc. 5, 363–379 (2007).  https://doi.org/10.1007/s10209-006-0061-9CrossRefGoogle Scholar
  30. 30.
    Harrison, R., Flood, D., Duce, D.: Usability of mobile applications: literature review and rationale for a new usability model. J. Interact. Sci. 1–16 (2013).  https://doi.org/10.1186/2194-0827-1-1CrossRefGoogle Scholar
  31. 31.
    Xie, H., et al.: The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: a meta-analysis and two meta-regression analyses. PLoS ONE 12 (2017).  https://doi.org/10.1371/journal.pone.0183884CrossRefGoogle Scholar
  32. 32.
    Ahlstrom, U., Friedman-Berg, F.J.: Using eye movement activity as a correlate of cognitive workload. Int. J. Ind. Ergon. 36, 623–636 (2006).  https://doi.org/10.1016/j.ergon.2006.04.002CrossRefGoogle Scholar
  33. 33.
    Van Orden, K.F., Limbert, W., Makeig, S., Jung, T.-P.: Eye activity correlates of workload during a visuospatial memory task. Hum. Factors J. Hum. Factors Ergon. Soc. 43, 111–121 (2001).  https://doi.org/10.1518/001872001775992570CrossRefGoogle Scholar
  34. 34.
    Chen, F., et al.: Real-time cognitive load measurement: data streaming approach. Robust Multimodal Cognitive Load Measurement. HIS, pp. 229–234. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31700-7_15CrossRefGoogle Scholar
  35. 35.
    Ganglbauer, E., Schrammel, J., Deutsch, S., Tscheligi, M.: Applying psychophysiological methods for measuring user experience: possibilities, challenges and feasibility. In: Human-Computer Interact. INTERACT 2011 LNCS, vol. 6949, pp. 714–715 (2009).  https://doi.org/10.1007/978-3-642-23768-3Google Scholar
  36. 36.
    Kramer, A.F.: Physiological metrics of mental workload: a review of recent progress. Mult. Task Perform. 279–328 (1991).  https://doi.org/10.1080/00140139.2014.956151CrossRefGoogle Scholar
  37. 37.
    Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91, 276–292 (1982).  https://doi.org/10.1037/0033-2909.91.2.276CrossRefGoogle Scholar
  38. 38.
    Ekman, P.: Facial expression and emotion. Am. Psychol. 48, 384–392 (1993).  https://doi.org/10.1037/0003-066X.48.4.384CrossRefGoogle Scholar
  39. 39.
    Staiano, J., Menéndez, M., Battocchi, A., De Angeli, A., Sebe, N.: UX_Mate: from facial expressions to UX evaluation. In: Proceedings of Designing Interactive Systems Conference-DIS 2012, p. 741 (2012).  https://doi.org/10.1145/2317956.2318068
  40. 40.
    Lane, R.D., Chua, P.M.-L., Dolan, R.J.: Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37, 989–997 (1999).  https://doi.org/10.1016/S0028-3932(99)00017-2CrossRefGoogle Scholar
  41. 41.
    Bartlett, M.S., Littlewort, G., Lainscsek, C., Fasel, I., Movellan, J.: Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 592–597 (2004).  https://doi.org/10.1109/icsmc.2004.1398364
  42. 42.
    EMarketer: How Often Do US Internet Users Access Their Bank Accounts via Mobile Device? (2018)Google Scholar
  43. 43.
    Piferi, R.L., Kline, K.A., Younger, J., Lawler, K.A.: An alternative approach for achieving cardiovascular baseline: Viewing an aquatic video. Int. J. Psychophysiol. 37, 207–217 (2000).  https://doi.org/10.1016/S0167-8760(00)00102-1CrossRefGoogle Scholar
  44. 44.
    Léger, P.-M., et al.: Precision is in the Eye of the Beholder: Application of Eye Fixation-Related Potentials to Information Systems Research. J. Assoc. Inf. Syst. 15, 651–678 (2014).  https://doi.org/10.17705/1jais.00376CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ariane Beauchesne
    • 1
    Email author
  • Sylvain Sénécal
    • 1
  • Marc Fredette
    • 1
  • Shang Lin Chen
    • 1
  • Bertrand Demolin
    • 1
  • Marie-Laure Di Fabio
    • 2
  • Pierre-Majorique Léger
    • 1
  1. 1.HEC MontréalMontréalCanada
  2. 2.Desjardins GroupMontréalCanada

Personalised recommendations