Skip to main content

On Cacti and Crystals

  • Chapter
  • First Online:
  • 761 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 330))

Abstract

In the present work we study actions of various groups generated by involutions on the category \(\mathscr O^{int}_q({\mathfrak {g}})\) of integrable highest weight \(U_q({\mathfrak {g}})\)-modules and their crystal bases for any symmetrizable Kac–Moody algebra \({\mathfrak {g}}\). The most notable of them are the cactus group and (yet conjectural) Weyl group action on any highest weight integrable module and its lower and upper crystal bases. Surprisingly, some generators of cactus groups are anti-involutions of the Gelfand–Kirillov model for \(\mathscr O^{int}_q({\mathfrak {g}})\) closely related to the remarkable quantum twists discovered by Kimura and Oya (Int Math Res Notices, 2019).

To Anthony Joseph, with admiration

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The difference between our notation and that of [7, 27] is in the linear automorphism of \(\mathcal A_q({\mathfrak {g}})\) defined on homogeneous elements x by \(x\mapsto q^{\frac 12(|x|,|x|)-(|x|,\rho )}x\).

References

  1. A. Berenstein and J. Greenstein, Quantum folding, Int. Math. Res. Not. 2011 (2011), no. 21, 4821–4883, DOI 10.1093/imrn/rnq264.

    Google Scholar 

  2. ——, Double canonical bases, Adv. Math. 316 (2017), 381–468, DOI 10.1016/j.aim.2017.06.005.

    Google Scholar 

  3. ——, Canonical bases of quantum Schubert cells and their symmetries, Selecta Math. (N.S.) 23 (2017), no. 4, 2755–2799. DOI 10.1007/s00029-017-0316-8.

    Google Scholar 

  4. A. Berenstein, J. Greenstein, and J.-R. Li, Monomial braidings, (in preparation).

    Google Scholar 

  5. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, Quantum groups, Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13–88, DOI 10.1090/conm/433/08321.

    Google Scholar 

  6. A. Berenstein and D. Rupel, Quantum cluster characters of Hall algebras, Selecta Math. (N.S.) 21 (2015), no. 4, 1121–1176, DOI 10.1007/s00029-014-0177-3.

    Article  MathSciNet  Google Scholar 

  7. A. Berenstein and A. Zelevinsky, String bases for quantum groups of type A r, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51–89.

    Google Scholar 

  8. ——, Canonical bases for the quantum group of type A r and piecewise-linear combinatorics, Duke Math. J. 82 (1996), no. 3, 473–502, DOI 10.1215/S0012-7094-96-08221-6.

    Google Scholar 

  9. A. Berenstein and S. Zwicknagl, Braided symmetric and exterior algebras, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3429–3472, DOI 10.1090/S0002-9947-08-04373-0.

    Article  MathSciNet  Google Scholar 

  10. C. Bonnafé, Cells and cacti, Int. Math. Res. Not. 19 (2016), 5775–5800, DOI 10.1093/imrn/rnv324.

    Article  MathSciNet  Google Scholar 

  11. N. Bourbaki, Éléments de mathématiques. Groupes et algèbres de Lie: Chapitres 4, 5 et 6, Masson, Paris, 1981.

    Google Scholar 

  12. V. Chari, D. Jakelić, and A. A. Moura, Branched crystals and the category \(\mathcal {O}\), J. Algebra 294 (2005), no. 1, 51–72, DOI 10.1016/j.jalgebra.2005.03.008.

    Google Scholar 

  13. M. Davis, T. Januszkiewicz, and R. Scott, Fundamental groups of blow-ups, Adv. Math. 177 (2003), no. 1, 115–179, DOI 10.1016/S0001-8708(03)00075-6.

    Article  MathSciNet  Google Scholar 

  14. S. L. Devadoss, Tessellations of moduli spaces and the mosaic operad, Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 91–114, DOI 10.1090/conm/239/03599.

    Google Scholar 

  15. V. G. Drinfel d, Quasi-hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148.

    Google Scholar 

  16. R. Jiménez Rolland and J. Maya Duque, Representation stability for the pure cactus group, Contributions of Mexican mathematicians abroad in pure and applied mathematics, Contemp. Math., vol. 709, Amer. Math. Soc., Providence, RI, 2018, pp. 53–67, DOI 10.1090/conm/709/14291.

    Google Scholar 

  17. I. M. Gel fand and A. V. Zelevinskiı̆, Polyhedra in a space of diagrams and the canonical basis in irreducible representations of \({\mathfrak {gl}}_3\), Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 72–75.

    Google Scholar 

  18. J. Greenstein and P. Lamprou, Path model for quantum loop modules of fundamental type, Int. Math. Res. Not. 14 (2004), 675–711, DOI 10.1155/S1073792804131917.

    Google Scholar 

  19. I. Halacheva, J. Kamnitzer, L. Rybnikov, and A. Weekes, Crystals and monodromy of Bethe vectors, available at arXiv:1708.05105.

    Google Scholar 

  20. A. Henriques and J. Kamnitzer, Crystals and coboundary categories, Duke Math. J. 132 (2006), no. 2, 191–216, DOI 10.1215/S0012-7094-06-13221-0.

    Article  MathSciNet  Google Scholar 

  21. A. Joseph, A pentagonal crystal, the golden section, alcove packing and aperiodic tilings, Transform. Groups 14 (2009), no. 3, 557–612, DOI 10.1007/s00031-009-9064-y.

    Article  MathSciNet  Google Scholar 

  22. A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), no. 2, 289–318, DOI 10.1016/0021-8693(92)90157-H.

    Article  MathSciNet  Google Scholar 

  23. V. G. Kac, Infinite-dimensional Lie algebras, 2nd ed., Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  24. M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516, DOI 10.1215/S0012-7094-91-06321-0.

    Article  MathSciNet  Google Scholar 

  25. ——, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485, DOI 10.1215/S0012-7094-93-06920-7.

    Article  MathSciNet  Google Scholar 

  26. ——, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413, DOI 10.1215/S0012-7094-94-07317-1.

    Article  MathSciNet  Google Scholar 

  27. Y. Kimura and H. Oya, Twist automorphisms on quantum unipotent cells and dual canonical bases, available at arXiv:1701.02268.

    Google Scholar 

  28. A. Kirillov and A. Berenstein, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz 7 (1995), no. 1, 92–152.

    MathSciNet  MATH  Google Scholar 

  29. I. Losev, Cacti and cells, available at arXiv:1506.04400.

    Google Scholar 

  30. G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.

    MATH  Google Scholar 

  31. ——, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl. 102 (1990), 175–201 (1991) DOI 10.1143/PTPS.102.175. Common trends in mathematics and quantum field theories (Kyoto, 1990).

    Google Scholar 

  32. ——, Problems on canonical bases, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 169–176.

    Google Scholar 

  33. L. Rybnikov, Cactus group and monodromy of Bethe vectors, available at arXiv:1409.0131.

    Google Scholar 

  34. A. Savage, Crystals, quiver varieties, and coboundary categories for Kac–Moody algebras, Adv. Math. 221 (2009), no. 1, 22–53, DOI 10.1016/j.aim.2008.11.016.

    Google Scholar 

  35. N. White, The monodromy of real Bethe vectors for the Gaudin model, available at arXiv:1511.04740.

    Google Scholar 

Download references

Acknowledgements

The first two authors are grateful to Anton Alekseev and Université de Genève, Switzerland, for their hospitality. An important part of this work was done during the second author’s stay at the Weizmann Institute of Science, Israel and during the conference in honor of Anthony Joseph’s 75th birthday, at the Weizmann Institute and at the University of Haifa. The authors would like to use this opportunity to thank Maria Gorelik and Anna Melnikov for organizing that wonderful event.

This work was partially supported by a BSF grant no. 2016363 (A. Berenstein), the Simons foundation collaboration grant no. 245735 (J. Greenstein) and by the Minerva foundation with funding from the Federal German Ministry for Education and Research (J.-R. Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Berenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berenstein, A., Greenstein, J., Li, JR. (2019). On Cacti and Crystals. In: Gorelik, M., Hinich, V., Melnikov, A. (eds) Representations and Nilpotent Orbits of Lie Algebraic Systems. Progress in Mathematics, vol 330. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23531-4_2

Download citation

Publish with us

Policies and ethics