Skip to main content

Singular Support of a Vertex Algebra and the Arc Space of Its Associated Scheme

  • Chapter
  • First Online:
Book cover Representations and Nilpotent Orbits of Lie Algebraic Systems

Part of the book series: Progress in Mathematics ((PM,volume 330))

Abstract

Attached to a vertex algebra \({\mathcal V}\) are two geometric objects. The associated scheme of \({\mathcal V}\) is the spectrum of Zhu’s Poisson algebra \(R_{{\mathcal V}}\). The singular support of \({\mathcal V}\) is the spectrum of the associated graded algebra \(\text{gr}({\mathcal V})\) with respect to Li’s canonical decreasing filtration. There is a closed embedding from the singular support to the arc space of the associated scheme, which is an isomorphism in many interesting cases. In this note we give an example of a non-quasi-lisse vertex algebra whose associated scheme is reduced, for which the isomorphism is not true as schemes but true as varieties.

Dedicated to Professor Anthony Joseph on his seventy-fifth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Provided that \({\mathcal V}\) is finitely strongly generated.

  2. 2.

    Unless \({\mathcal V}\) is finite-dimensional.

References

  1. D. Adamovic, Classification of irreducible modules of certain subalgebras of free boson vertex algebra, Journal of Algebra 270 (2003) 115–132.

    Article  MathSciNet  Google Scholar 

  2. D. Adamovic and A. Milas, On the triplet vertex algebra \({\mathcal W}(p)\), Adv. Math. 217 (2008), no. 6, 2664–2699.

    Google Scholar 

  3. T. Arakawa, A remark on the C 2 cofiniteness condition on vertex algebras, Math. Z. 270 (2012), no. 1–2, 559–575.

    Article  MathSciNet  Google Scholar 

  4. T. Arakawa, Associated Varieties and Higgs Branches (A Survey), Contemp. Math. 711 (2018), 37–44.

    Google Scholar 

  5. T. Arakawa, Representation theory of W-algebras and Higgs branch conjecture, Proc. Int. Cong. of Math 2018 Rio de Janeiro, Vol. 1 (1261–1278).

    Google Scholar 

  6. T. Arakawa and K. Kawasetsu, Quasi-lisse vertex algebras and modular linear differential equations, In: V. G. Kac, V. L. Popov (eds.), Lie Groups, Geometry, and Representation Theory, A Tribute to the Life and Work of Bertram Kostant, Progr. Math., 326, Birkhauser, 2018.

    Google Scholar 

  7. T. Arakawa and A. Moreau, Lectures on \({\mathcal W}\) -algebras, preprint.

    Google Scholar 

  8. T. Arakawa and A. Moreau, Arc spaces and chiral symplectic cores, to appear in the special issue of Publ. Res. Inst. Math. in honor of Professor Masaki Kashiwara’s 70th birthday.

    Google Scholar 

  9. C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, Infinite chiral symmetry in four dimensions, Comm. Math. Phys., 336(3):1359–1433, 2015.

    Article  MathSciNet  Google Scholar 

  10. C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular differential equations, J. High Energ. Phys. (2018) 2018:114. https://doi.org/10.1007/JHEP08(2018)114

    Article  MathSciNet  Google Scholar 

  11. R. Borcherds, Vertex operator algebras, Kac-Moody algebras and the monster, Proc. Nat. Acad. Sci. USA 83 (1986) 3068–3071.

    Article  Google Scholar 

  12. D. Bourqui and J. Sebag, The radical of the differential ideal generated by XYin the ring of two variable differential polynomials is not differentially finitely generated, to appear Journal of Comm. Algebra (2017).

    Google Scholar 

  13. A. de Sole and V. Kac, Freely generated vertex algebras and non-linear Lie conformal algebras, Comm. Math. Phys. 254 (2005), no. 3, 659–694.

    Article  MathSciNet  Google Scholar 

  14. C. Dong and K. Nagatomo, Classification of irreducible modules for the vertex operator algebra M(1)+, J. Algebra 216 (1999), no. 1, 384–404.

    Article  MathSciNet  Google Scholar 

  15. L. Ein and M. Mustata, Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2, 505–546, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  16. J. van Ekeren and R. Heluani, Chiral homology of elliptic curves and Zhu’s algebra, arXiv:1804.00017 [math.QA].

    Google Scholar 

  17. E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys and Monographs, Vol. 88, American Math. Soc., 2001.

    Google Scholar 

  18. I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, New York, 1988.

    MATH  Google Scholar 

  19. V. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10. American Math. Soc., 1998

    Google Scholar 

  20. K. Kpognon, J. Sebag, Nilpotency in arc schemes of plane curves, Comm. in Algebra, Vol. 45 no 5 (2017), 2195–2221

    Article  MathSciNet  Google Scholar 

  21. E. Kolchin, Differential algebra and algebraic groups, Academic Press, New York 1973.

    MATH  Google Scholar 

  22. H. Li, Vertex algebras and vertex Poisson algebras, Commun. Contemp. Math. 6 (2004) 61–110.

    Article  MathSciNet  Google Scholar 

  23. M. Miyamoto, Modular invariance of vertex operator algebras satisfying C2-cofiniteness. Duke Math. J. 122(1), 51–91 (2004).

    Article  MathSciNet  Google Scholar 

  24. J. Sebag, Arcs schemes, derivations and Lipman’s theorem, J. Algebra 347 (2011) 173–183.

    Article  MathSciNet  Google Scholar 

  25. J. Sebag, A remark on Berger’s conjecture, Kolchin’s theorem and arc schemes, Archiv der Math., Vol. 108 no (2017), 145–150

    Article  MathSciNet  Google Scholar 

  26. W. Wang, \({\mathcal W}_{1+\infty }\) algebra, \({\mathcal W}_3\) algebra, and Friedan-Martinec-Shenker bosonization, Comm. Math. Phys. 195 (1998), no. 1, 95–111.

    Google Scholar 

  27. W. Wang, Classification of irreducible modules of \({\mathcal W}_3\) algebra with c = −2, Comm. Math. Phys. 195 (1998), no. 1, 113–128.

    Google Scholar 

  28. A.B. Zamolodchikov, Infinite extra symmetries in two-dimensional conformal quantum field theory (Russian), Teoret. Mat. Fiz. 65 (1985), 347–359. English translation, Theoret. and Math. Phys. 65 (1985), 1205–1213.

    Google Scholar 

  29. Y. Zhu, Modular invariants of characters of vertex operators, J. Amer. Soc. 9 (1996) 237–302.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. A. is supported by JSPS KAKENHI Grants #17H01086 and #17K18724. A. L. is supported by Simons Foundation Grant #318755. We thank Julien Sebag for helpful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Arakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakawa, T., Linshaw, A.R. (2019). Singular Support of a Vertex Algebra and the Arc Space of Its Associated Scheme. In: Gorelik, M., Hinich, V., Melnikov, A. (eds) Representations and Nilpotent Orbits of Lie Algebraic Systems. Progress in Mathematics, vol 330. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23531-4_1

Download citation

Publish with us

Policies and ethics