Advertisement

An Approach to Conversational Recommendation of Restaurants

  • Nicola Sardella
  • Claudio Biancalana
  • Alessandro Micarelli
  • Giuseppe SansonettiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1034)

Abstract

In this paper, we propose an approach based on the integration of a chatbot module, a location-based service, and a recommendation algorithm. This approach has been deployed for restaurant recommendation, tested on a sample of 50 real users, and compared with some state-of-the-art algorithms. The preliminary experimental results showed the benefits of the proposed approach in terms of performance. An ANOVA test enabled us to verify the statistical significance of the obtained findings.

Keywords

Conversational recommender systems Location-based services Cold-start 

References

  1. 1.
    Arru, G., Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Signal-based user recommendation on Twitter. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013 Companion, pp. 941–944. ACM, New York (2013)Google Scholar
  2. 2.
    Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing traditional local search recommendations with context-awareness. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 335–340. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22362-4_29CrossRefGoogle Scholar
  3. 3.
    Biancalana, C., Gasparetti, F., Micarelli, A., Miola, A., Sansonetti, G.: Context-aware movie recommendation based on signal processing and machine learning. In: Proceedings of the 2nd Challenge on Context-Aware Movie Recommendation, CAMRa 2011, pp. 5–10. ACM, New York (2011)Google Scholar
  4. 4.
    Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: An approach to social recommendation for context-aware mobile services. ACM Trans. Intell. Syst. Technol. 4(1), 10:1–10:31 (2013)CrossRefGoogle Scholar
  5. 5.
    Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: Social semantic query expansion. ACM Trans. Intell. Syst. Technol. 4(4), 60:1–60:43 (2013)CrossRefGoogle Scholar
  6. 6.
    Bologna, C., De Rosa, A.C., De Vivo, A., Gaeta, M., Sansonetti, G., Viserta, V.: Personality-based recommendation in E-commerce. In: CEUR Workshop Proceedings, vol. 997. CEUR-WS.org, Aachen (2013)Google Scholar
  7. 7.
    Caldarelli, S., Feltoni Gurini, D., Micarelli, A., Sansonetti, G.: A signal-based approach to news recommendation. In: CEUR Workshop Proceedings, vol. 1618. CEUR-WS.org, Aachen (2016)Google Scholar
  8. 8.
    Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recommender systems. In: Proceedings of the 22nd ACM SIGKDD, KDD 2016, pp. 815–824. ACM, New York (2016)Google Scholar
  9. 9.
    D’Agostino, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: A social context-aware recommender of itineraries between relevant points of interest. In: Stephanidis, C. (ed.) HCI 2016. CCIS, vol. 618, pp. 354–359. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40542-1_58CrossRefGoogle Scholar
  10. 10.
    D’Aniello, G., Gaeta, A., Gaeta, M., Loia, V., Reformat, M.Z.: Collective awareness in smart city with fuzzy cognitive maps and fuzzy sets. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1554–1561, July 2016Google Scholar
  11. 11.
    D’Aniello, G., Gaeta, M., Reformat, M.Z.: Collective perception in smart tourism destinations with rough sets. In: 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–6, June 2017Google Scholar
  12. 12.
    Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: A sentiment-based approach to Twitter user recommendation. In: CEUR Workshop Proceedings, vol. 1066. CEUR-WS.org, Aachen (2013)Google Scholar
  13. 13.
    Gurini, D.F., Gasparetti, F., Micarelli, A., Sansonetti, G.: iSCUR: interest and sentiment-based community detection for user recommendation on Twitter. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 314–319. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08786-3_27CrossRefGoogle Scholar
  14. 14.
    Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Analysis of sentiment communities in online networks. In: CEUR Workshop Proceedings, vol. 1421, pp. 17–20 (2015)Google Scholar
  15. 15.
    Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Enhancing social recommendation with sentiment communities. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9419, pp. 308–315. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26187-4_28CrossRefGoogle Scholar
  16. 16.
    Feltoni Gurini, D., Gasparetti, F., Micarelli, A., Sansonetti, G.: Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization. Future Gener. Comput. Syst. 78, 430–439 (2018)CrossRefGoogle Scholar
  17. 17.
    Fogli, A., Micarelli, A., Sansonetti, G.: Enhancing itinerary recommendation with linked open data. In: Stephanidis, C. (ed.) HCI 2018. CCIS, vol. 850, pp. 32–39. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92270-6_5CrossRefGoogle Scholar
  18. 18.
    Fogli, A., Sansonetti, G.: Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquit. Comput. (2019)Google Scholar
  19. 19.
    Gasparetti, F., Micarelli, A., Sansonetti, G.: Exploiting web browsing activities for user needs identification. In: International Conference on Computational Science and Computational Intelligence, vol. 2, pp. 86–89, March 2014Google Scholar
  20. 20.
    Greco, C., Suglia, A., Basile, P., Semeraro, G.: Converse-Et-Impera: exploiting deep learning and hierarchical reinforcement learning for conversational recommender systems. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 372–386. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70169-1_28CrossRefGoogle Scholar
  21. 21.
    Hassan, H.A.M., Sansonetti, G., Gasparetti, F., Micarelli, A.: Semantic-based tag recommendation in scientific bookmarking systems. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, pp. 465–469. ACM, New York (2018)Google Scholar
  22. 22.
    Kucherbaev, P., Psyllidis, A., Bozzon, A.: Chatbots as conversational recommender systems in urban contexts. In: Proceedings of the International Workshop on Workshop on Recommender Systems for Citizens, CitRec 2017, pp. 6:1–6:2. ACM, New York (2017)Google Scholar
  23. 23.
    Micarelli, A., Neri, A., Sansonetti, G.: A case-based approach to image recognition. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 443–454. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44527-7_38CrossRefGoogle Scholar
  24. 24.
    Narducci, F., de Gemmis, M., Lops, P., Semeraro, G.: Recommender systems in the internet of talking things (IoTT). In: Proceedings of the Poster Track of the 11th ACM Conference on Recommender Systems (RecSys 2017), Como, 28 August 2017Google Scholar
  25. 25.
    Onori, M., Micarelli, A., Sansonetti, G.: A comparative analysis of personality-based music recommender systems. In: CEUR Workshop Proceedings, vol. 1680, pp. 55–59. CEUR-WS.org, Aachen (2016)Google Scholar
  26. 26.
    Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook, 2nd edn. Springer, New York (2015).  https://doi.org/10.1007/978-0-387-85820-3CrossRefzbMATHGoogle Scholar
  27. 27.
    Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, NIPS 2007, pp. 1257–1264. Curran Associates Inc., USA (2007)Google Scholar
  28. 28.
    Sansonetti, G.: Point of interest recommendation based on social and linked open data. Pers. Ubiquit. Comput. (in press)Google Scholar
  29. 29.
    Sansonetti, G., Feltoni Gurini, D., Gasparetti, F., Micarelli, A.: Dynamic social recommendation. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017, pp. 943–947. ACM, New York (2017)Google Scholar
  30. 30.
    Sansonetti, G., Gasparetti, F., Micarelli, A., Cena, F., Gena, C.: Enhancing cultural recommendations through social and linked open data. User Model. User-Adap. Inter. 29, 121 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicola Sardella
    • 1
  • Claudio Biancalana
    • 1
  • Alessandro Micarelli
    • 1
  • Giuseppe Sansonetti
    • 1
    Email author
  1. 1.Department of EngineeringRoma Tre UniversityRomeItaly

Personalised recommendations