Skip to main content

A Novel Semantically Congruent Audiovisual Interface for Assisting Brain-Machine Interface (BMI) Performance Enhancement

  • Conference paper
  • First Online:
HCI International 2019 - Posters (HCII 2019)

Abstract

Brain-Machine Interfaces utilize distinct brain patterns as control commands. However, many BMIs suffer from low performance issue even with the state-of-the-art classification algorithms in hand. Herein, we propose a novel BMI interface using semantically congruent audiovisual stimuli involving contextual motions to assist BMI performance enhancement. We designed two motion classes of “up” and “down” using two paradigms: visual only and congruent audiovisual pair. We first compared the level of spectral discernibility between the two given commands within each paradigm using frontal, temporal, and occipital channels. We then applied these paradigms onto a EEG-controlled drone system. Although the power spectral density did not show any statistically significant differences, the subjects’ drone controlling performance increased by 16% with the audiovisual interface compared to the visual only interface. Thus, this semantically congruent audiovisual BMI interface using contextual motion stimuli may be used as a supportive tool for enhancing BMI performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  2. Wolpaw, J., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and controls. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  3. Debener, S., et al.: How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49(11), 1617–1621 (2012)

    Article  Google Scholar 

  4. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007)

    Article  Google Scholar 

  5. Johannesen, J.K., et al.: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr. Electrophysiol. 2, 3 (2016)

    Article  Google Scholar 

  6. Samuel, O.W., et al.: Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2017)

    Google Scholar 

  7. Curran, E.: Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003)

    Article  Google Scholar 

  8. Czigler, I., Balázs, L.: Event-related potentials and audiovisual stimuli: multimodal interactions. NeuroReport 12(2), 223–226 (2001)

    Article  Google Scholar 

  9. Hein, G., et al.: Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas. J. Neurosci. 27(30), 7881–7887 (2007)

    Article  Google Scholar 

  10. Calvert, G.A.: Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb. Cortex 11(12), 1110–1123 (2001)

    Article  Google Scholar 

  11. Meredith, M.A., Stein, B.E.: Interactions among converging sensory inputs in the superior colliculus. Science 221(4608), 389–391 (1983)

    Article  Google Scholar 

  12. Doehrmann, O., Naumer, M.J.: Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration. Brain Res. 1242, 136–150 (2008)

    Article  Google Scholar 

  13. Molholm, S., et al.: Multisensory auditory–visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cogn. Brain. Res. 14(1), 115–128 (2002)

    Article  Google Scholar 

  14. Talsma, D., Doty, T.J., Woldorff, M.G.: Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb. Cortex 17(3), 679–690 (2006)

    Article  Google Scholar 

  15. van Driel, J., et al.: Interregional alpha-band synchrony supports temporal cross-modal integration. Neuroimage 101, 404–415 (2014)

    Article  Google Scholar 

  16. Peirce, J.W.: PsychoPy—psychophysics software in Python. J. Neurosci. Methods 162(1), 8–13 (2007)

    Article  Google Scholar 

  17. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  18. Chaumon, M., Bishop, D.V., Busch, N.A.: A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 250, 47–63 (2015)

    Article  Google Scholar 

  19. Stein, B.E., Stanford, T.R.: Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9(4), 255–266 (2008)

    Article  Google Scholar 

  20. McGurk, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264(5588), 746–748 (1976)

    Article  Google Scholar 

  21. Shimojo, S., Shams, L.: Sensory modalities are not separate modalities: plasticity and interactions. Curr. Opin. Neurobiol. 11(4), 505–509 (2001)

    Article  Google Scholar 

  22. Chen, Y.C., Yeh, S.L., Spence, C.: Crossmodal constraints on human perceptual awareness: auditory semantic modulation of binocular rivalry. Front. Psychol. 2, 212 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungyong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, S., Kim, J. (2019). A Novel Semantically Congruent Audiovisual Interface for Assisting Brain-Machine Interface (BMI) Performance Enhancement. In: Stephanidis, C. (eds) HCI International 2019 - Posters. HCII 2019. Communications in Computer and Information Science, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-030-23522-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23522-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23521-5

  • Online ISBN: 978-3-030-23522-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics