Skip to main content

Majorana Fermions in Condensed Matter

  • Chapter
  • First Online:
Book cover Scientific Papers of Ettore Majorana
  • 789 Accesses

Abstract

Fermi’s opinion that Ettore Majorana ranked within the Olympus of geniuses finds its best demonstration in the ninth Majorana’s paper [1], the last being published before his misterious disappearance on the 26th March 1938 at the age of 31. The paper, perfectly translated from the original Italian by Luciano Maiani [2] and entitled “A symmetric theory of electrons and positron”, aimed at modifying Dirac equation through a new quantization process, so as to avoid the solutions of negative energy. While for charged fermions such as electrons and positrons the new symmetric theory necessarily implies complex fields, Majorana shows that for neutral fermions the theory leads to the identity of particles with their own antiparticles, thus arguing “that there is no reason now to infer the existence of antineutrons and antineutrinos.” [2]. The process consists in replacing Dirac’s anticommuting gamma matrices γ μ with a new set of fully imaginary Majorana’s anticommuting matrices \( {\tilde{\gamma}}^{\mu }=-\left({\tilde{\gamma}}^{\mu}\right)^{\ast} \) which fulfil the Clifford algebra. In this way the operator \( i\;{\tilde{\gamma}}^{\mu }{\partial}_{\mu } \) is real, thus allowing for real eigenfuction. The reality of field operators is a prerequisite for a particle being its own eigenfuction, as it implies the identity between particle and antiparticle creator operators, ψ*  ≡ ψ. Among the numerous contributions made by Majorana in his short life, that of “Majorana fermions” is perhaps the most profound and far-reaching one. As Frank Wilczek remarks in his fashinating 2009 Nature Physics perspective “Majorana returns” [3], “for 70 years his modified equation remained a rather obscure footnote in theoretical physics. Now suddenly …. Majorana’s concept is ubiquitous, and his equation is central to recent work not only in neutrino physics, super symmetry and dark matter, but also on some exotic states of ordinary matter.”

Just the day this note was completed I received the sad news that Shoucheng Zhang passed away on December 1st, 2018, at only 55. This note is dedicated to his memory in consideration of his fundamental theoretical and experimental contribution to the discovery of Majorana fermions in condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majorana, E.: Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 14, 171–184 (1937)

    Article  ADS  MATH  Google Scholar 

  2. The translation by Luciano Maiani appeared first in Soryushiron Kenkyu, 63, 149 (1981), then reproduced, with his Commentary and the inclusion of the original summary, in the bilingual centenary collection Ettore Majorana Scientific Papers, edited by G. F. Bassani and the Council of the Italian Physical Society. SIF & Springer (2006), pp. 201–233

    Google Scholar 

  3. Wilczek, F.: Majorana returns. Nat. Phys. 5, 614–619 (2009)

    Article  Google Scholar 

  4. Bettini, A.: Are neutrinos completely neutral particles? this volume, p. 143

    Google Scholar 

  5. Avignone, T.F., Elliott, S.R., Engel, J.: Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)

    Article  ADS  Google Scholar 

  6. Alicea, J.: New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501

    Article  ADS  Google Scholar 

  7. Atiyah, M. F., Singer, I. M.: The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc. 69, 422–433 (1963); Atiyah, M. F., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. Bull. London Math. Soc. 5, 229–234 (1973). The great Indian mathematician Vijay Patodi (1945–1976), whose name is associated to those of Atiyah and Singer for proving the index theorem for elliptic operators based on the heat equation (M. F. Atiyah, R. Bott, and V. K. Patodi, On the Heat Equation and the Index Theorem, Invent. Math. 19, 279 (1973)) passed away prematurely, having the same age as Majorana when he disappeared

    Google Scholar 

  8. Weinberg, E.J.: Phys. Rev. D. 24, 2669–2673 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. Haldane, F.D.M.: Nobel Lecture:Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bianconi, A., Maeno, Y. (eds.): Majorana Fermions and Topological Materials Science. Superstripes Press, Rome (2018). This abstract book of the 75th Course, chaired by Antonio Bianconi and Yoshiteru Maeno, of the International School of Solid State Physics (ISSSP), held at the Ettore Majorana Foundation and Centre for Scientific Culture in Erice, Italy on 21–27 July 2018, offers an up-to-date overview of the subject. This course was a follow-up of the 59th Course of ISSSP on Majorana Physics in Condensed Matter, 12–18 July 2013 (web.nano.cnr.it/mpcm13/MPCM2013Booklet.pdf). The concepts exposed in the lecture delivered by Frank Wilczek at the 2013 course can be found in F. Wilczek, Majorana and Condensed Matter Physics, arXiv:1404.0637 [cond-mat.supr-con] reported in the book by S. Esposito, The Physics of Ettore Majorana – Theoretical, Mathematical, and Phenomenological. Cambridge University Press (2014), pp. 279–302

  11. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  12. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–31 (2009)

    Article  ADS  MATH  Google Scholar 

  13. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  14. Barborini, E., Piseri, P., Milani, P., Benedek, G., Ducati, C., Robertson, J.: Negatively curved spongy carbon. Appl. Phys. Lett. 81, 3359–3361 (2002); see also: Ed Gerstner, “Spongy carbon”, Nat. Mater. Update, 7 Nov 2002

    Google Scholar 

  15. Benedek, G., Bernasconi, M., Cinquanta, E., D’Alessio, L., De Corato, M.: Chapter 12: the topological background of schwarzite physics. In: Cataldo, F., Graovac, A., Ori, O. (eds.) Mathematics and topology of fullerenes, Springer series on carbon materials chemistry and physics, vol. 4. Springer, Heidelberg/Berlin (2011)

    Google Scholar 

  16. Benedek, G.: When topology matters: the Nobel prize in physics 2016. Revue Quest. Sci. 188 (2), 1–7 (2017); Benedek, G.: Graphene as a quantum playground, in modern aspects of the combined applications of heat-electricity-mechanics, Rigamonti, A., Varlamov, A. (eds.) Istituto Lombardo Accademia di Scienze e Lettere (2018) pp. 77–104. http://www.ilasl.org/index.php/Incontri/issue/view/47

  17. Volovik, G.E.: The Universe in a Helium Droplet. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  18. See, e.g., Unruh, W. G., Schützhold R. (eds.): Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Springer Lecture Notes in Physics Vol. 718 (2007); in particular the chapter by G. E. Volovik, pp. 31–73

    Google Scholar 

  19. Another interesting example is: Hartnoll, S. A., Herzog, C. P., Horowitz, G. T.: Holographic superconductors. JHEP 12, 015 (2008)

    Google Scholar 

  20. Leggett, A. L.: Majorana fermions in condensed-matter physics. Int. J. Modern Phys. B. 30, 1630012 (11 pp.) (2016)

    Google Scholar 

  21. Volovik, G.E.: Fermion zero modes on vortices in chiral superconductor. JETP Lett. 70, 609–614 (1999)

    Article  ADS  Google Scholar 

  22. Yu Kitaev, A.: Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001)

    Google Scholar 

  23. Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  24. Oreg, Y., Refael, G., von Oppen, F.: Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  25. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science. 336, 1003 (2012)

    Article  ADS  Google Scholar 

  26. Wilson, R.M.: Phys. Today. 65(6), 14 (2012). https://doi.org/10.1063/PT.3.1587

    Article  Google Scholar 

  27. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012)

    Article  Google Scholar 

  28. Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  29. Finck, A.D.K., Van Harlingen, D.J., Mohseni, P.K., Jung, K., Li, X.: Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2013)

    Article  ADS  Google Scholar 

  30. He, J.J., Ng, T.K., Lee, P.A., Law, K.T.: Selective equal-spin Andreev reflections induced by Majorana fermions. Phys. Rev. Lett. 112, 037001 (2014)

    Article  ADS  Google Scholar 

  31. He, J.J., Wu, J., Choy, T.-P., Liu, X.-J., Tanaka, Y., Law, K.T.: Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors. Nat. Commun. 5, 3232 (2014)

    Article  ADS  Google Scholar 

  32. Lee, E.J.H., Jiang, X., Houzet, M., Aguado, R., Lieber, C.M., De Franceschi, S.: Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 9, 79 (2014)

    Article  ADS  Google Scholar 

  33. Tanaka, Y., Yokoyama, T., Nagaosa, N.: Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009)

    Article  ADS  Google Scholar 

  34. Law, K.T., Lee, P.A., Ng, T.K.: Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009)

    Article  ADS  Google Scholar 

  35. Nadj-Perge, S., Drozdov, I.K., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald, A., Bernevig, B.A., Yazdani, A.: Observation of Majorana fermions in ferro-magnetic atomic ahains on a superconductors. Science. 346, 602 (2014)

    Article  ADS  Google Scholar 

  36. Liu, J., Potter, A.C., Law, K.T., Lee, P.A.: Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012)

    Article  ADS  Google Scholar 

  37. Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B. 61, 10267 (2000)

    Article  ADS  Google Scholar 

  38. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Fu, L., Kane, C.L.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  40. Fu, L., Kane, C.L.: Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009)

    Article  ADS  Google Scholar 

  41. Akhmerov, A.R., Nilsson, J., Beenakker, C.W.J.: Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009)

    Article  ADS  Google Scholar 

  42. Xu, J.-P., Wang, M.-X., Liu, Z.L., Ge, J.-F., Yang, X., Liu, C., Xu, Z.A., Guan, D., Gao, C.L., Qian, D., Liu, Y., Wang, Q.-H., Zhang, F.-C., Xue, Q.-K., Jia, J.-F.: Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 hetero-structure. Phys. Rev. Lett. 114, 017001 (2015)

    Article  ADS  Google Scholar 

  43. Sun, H.-H., Zhang, K.-W., Hu, L.-H., Li, C., Wang, G.-Y., Ma, H.-Y., Xu, Z.-A., Gao, C.-L., Guan, D.-D., Li, Y.-Y., Liu, C., Qian, D., Zhou, Y., Fu, L., Li, S.-C., Zhang, F.-C., Jia, J.-F.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 111, 257 (2016)

    Google Scholar 

  44. Wang, M.-X., Liu, C., Xu, J.-P., Yang, F., Miao, L., Yao, M.-Y., Gao, C.L., Shen, C., Ma, X., Chen, X., Xu, Z.-A., Liu, Y., Zhang, S.-C., Qian, D., Jia, J.-F., Xue, Q.-K.: The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science. 336, 52 (2012)

    Article  ADS  Google Scholar 

  45. Chamon, C., Jackiw, R., Nishida, Y., Pi, S.-Y., Santos, L.: Quantizing Majorana fermions in a superconductor. Phys. Rev. B. 81, 224515 (2010)

    Article  ADS  Google Scholar 

  46. Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Chiral topological superconductor from the quantum Hall state. Phys. Rev. B. 82, 184516 (2010)

    Article  ADS  Google Scholar 

  47. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  48. Chung, S.B., Qi, X.-L., Maciejko, J., Zhang, S.-C.: Conductance and noise signatures of Majorana backscattering. Phys. Rev. B. 83, 100512(R) (2011)

    Article  ADS  Google Scholar 

  49. Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., Wang, Y., Lu, L., Ma, X.-C., Xue, Q.-K.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 340, 167–170 (2013)

    Article  ADS  Google Scholar 

  50. Wang, J., Zhou, Q., Lian, B., Zhang, S.-C.: Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition. Phys. Rev. B. 92, 064520 (2015)

    Article  ADS  Google Scholar 

  51. He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S.-C., Liu, K., Xia, J., Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science. 357, 294 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zhang, S.-C.: Discovery of the chiral Majorana fermion, in https://sitp.stanford.edu/sites/default/files/discovery_of_majorana_0.pdf and Stanford video-lecture in https://www.youtube.com/watch?v=sbJSAOngiGI

  53. Banerjee, M., Heiblum, M., Umansky, V., Feldman, D.E., Oreg, Y., Stern, A.: Observation of half-integer thermal Hall conductance. Nature. 559, 205–210 (2018)

    Article  ADS  Google Scholar 

  54. Kasahara, Y., Ohnishi, T., Mizukami, Y., Tanaka, O., Ma, S., Sugii, K., Kurita, N., Tanaka, H., Nasu, J., Motome, Y., Shibauchi, T., Matsuda, Y.: Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature. 559, 227–231 (2018)

    Article  ADS  Google Scholar 

  55. Shtengel, K.: The heat is on for Majorana fermions. Nature. 559, 189–190 (2018)

    Article  ADS  Google Scholar 

  56. March, N.H., Paranjape, B.V., Robson, R.E.: Nernst, Ettingshausen and Righi-Leduc phenomena in relation to the quantum Hall effect in two-dimensional electron assemblies. J. Phys. Chem. Solids. 54, 745 (1993)

    Article  ADS  Google Scholar 

  57. Jackeli, G., Khaliullin, G.: Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  58. Kim, H.-S., Shankar, V.V., Catuneanu, A., Kee, H.-Y.: Kitaev magnetism in honeycomb RuCl3 with intermediate spin–orbit coupling. Phys. Rev. B. 91, 241110 (2015)

    Article  ADS  Google Scholar 

  59. Banerjee, A. A., Bridges, C. A., Yan, J.-Q., Aczel, A. A., Li, L., Stone, M. B., Granroth, G. E., Lumsden, M. D., Yiu, Y., Knolle,J., Bhattacharjee, S., Kovrizhin, D. L., Moessner, R., Tennant, D. A., Mandrus, D. G., Nagler, S. E.: Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016)

    Google Scholar 

  60. Chung, S.B., Zhang, S.-C.: Detecting the Majorana fermion surface state of 3He-B through spin relaxation. Phys. Rev. Lett. 103, 235301 (2009)

    Article  ADS  Google Scholar 

  61. Sato, M., Takahashi, Y., Fujimoto, S.: Non-abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys. Rev. Lett. 103, 020401 (2009)

    Article  ADS  Google Scholar 

  62. Tewari, S., das Sarma, S., Nayak, C., Zhang, C.W., Zoller, P.: Quantum computation using vortices and Majorana zero modes of a px + ipy superfluid of fermionic cold atoms. Phys. Rev. Lett. 98, 010506 (2007)

    Article  ADS  Google Scholar 

  63. Gül, Ö., Zhang, H., Bommer, J. D. S., de Moor, M. W. A. K., Car, D., Plissard, S. R., Bakkers, E. P. A. M., Geresdi, A., Watanabe, K., Taniguchi, T., Kouwenhoven, L. P.: Ballistic Majorana nanowire devices. Nat. Nanotechnol. 13, 192–197 (2018)

    Google Scholar 

  64. Ivanov, D.A.: Non-abelian statistics of hall-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  65. Liang, Q.F., Wang, Z., Hu, X.: Manipulation of Majorana fermions by point-like gate voltage in the vortex state of a topological superconductor. EPL 99, 50004 (2012)

    Article  ADS  Google Scholar 

  66. Wu, L.-H., Liang, Q.-F., Hu, X.: New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014)

    Article  Google Scholar 

  67. Kauffman, L.H., Lomonaco, S.J.: Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quant. Inform. Process. 17, 201 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Benedek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benedek, G. (2020). Majorana Fermions in Condensed Matter. In: Cifarelli, L. (eds) Scientific Papers of Ettore Majorana. Springer, Cham. https://doi.org/10.1007/978-3-030-23509-3_14

Download citation

Publish with us

Policies and ethics