Advertisement

A User Constraint Awareness Approach for QoS-Based Service Composition

  • Zhihui Wu
  • Piyuan LinEmail author
  • Peijie Huang
  • Huachong Peng
  • Yihui He
  • Junan Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11512)

Abstract

Web service composition adopts functional features including the inputs and outputs, and non-functional features including quality of service (QoS), conditional structure constraints, user preferences, and trusts to compose homogeneous or heterogeneous services together in order to create value-added services. However, in some complex practical application scenarios, the web services with the same function can provide the generous differentiated contents, and there is no approach to focus on the user’s constraints on the content provided by the web services. In this paper, we focus on handling three composition dimensions simultaneously including functional features, QoS and the user’s constraints on the contents provided by the web services. Therefore, an improved genetic algorithm to obtain an optimal solution for this task is applied. In addition, we also take it into consideration that the over-constrained problem caused by implicit conflicting constraints and improve a constraint correction approach to solve this problem with less cost of consistency checks. Experimental results using the real datasets about travel demonstrate the effectiveness of our approach in creating the fully functional and quality-optimized solutions, on the premise that the users constraints on the content are satisfied.

Keywords

User constraint awareness Web service composition Over-constrained problems Genetic algorithm Constraint correction 

Notes

Acknowledgments

The research work was supported by National Natural Science Foundation of China under Grant No. 71472068.

References

  1. 1.
    Wang, H., Zou, B., Guo, G., Zhang, J., Yang, Z.: Optimal and effective web service composition with trust and user preference. In: Proceedings of the 22th IEEE International Conference on Web Services (ICWS 2015), pp. 329–336 (2015)Google Scholar
  2. 2.
    Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly configurable web services. In: Proceedings of the 16th International Conference on World Wide Web, pp. 1013–1022 (2007)Google Scholar
  3. 3.
    da Silva, A., Ma, H., Zhang, M.: A GP approach to QoS-aware web service composition including conditional constraints. In: Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC 2015), pp. 2113–2120 (2015)Google Scholar
  4. 4.
    Rodriguez-Mier, P., Mucientes, M., Lama, M.: A hybrid local-global optimization strategy for QoS-aware service composition. In: Proceedings of the 22th IEEE International Conference on Web Services (ICWS 2015), pp. 735–738 (2015)Google Scholar
  5. 5.
    Wang, H., Huang, G., Yu, Q.: Automatic hierarchical reinforcement learning for efficient large-scale service composition. In: Proceedings of the 23th IEEE International Conference on Web Services (ICWS 2016), pp. 57–64 (2016)Google Scholar
  6. 6.
    Wang, H., Gu, M., Yu, Q., Fei, H., Li, J., Tao, Y.: Large-scale and adaptive service composition using deep reinforcement learning. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 383–391. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69035-3_27CrossRefGoogle Scholar
  7. 7.
    Wang, H., Chen, X., Wu, Q., Yu, Q., Zheng, Z., Bouguettaya, A.: Integrating on-policy reinforcement learning with multi-agent techniques for adaptive service composition. In: Franch, X., Ghose, Aditya K., Lewis, Grace A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 154–168. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45391-9_11CrossRefGoogle Scholar
  8. 8.
    Labbaci, H., Medjahed, B., Aklouf, Y.: A deep learning approach for long term qos-compliant service composition. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 287–294. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69035-3_20CrossRefGoogle Scholar
  9. 9.
    Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Automatically learning user preferences for personalized service composition. In: Proceedings of the 24th IEEE International Conference on Web Services (ICWS 2017), pp. 776–783 (2017)Google Scholar
  10. 10.
    Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Probabilistic qualitative preference matching in long-term iaas composition. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 256–271. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69035-3_18CrossRefGoogle Scholar
  11. 11.
    Paradesi, S., Doshi, P., Swaika, S.: Integrating behavioral trust in web service compositions. In: Proceedings of the 16th IEEE International Conference on Web Services (ICWS 2009), pp. 453–460 (2009)Google Scholar
  12. 12.
    Freuder, E., Mackworth, A.: Constraint satisfaction: an emerging paradigm. Found. Artif. Intell. 2, 13–27 (2006)CrossRefGoogle Scholar
  13. 13.
    Zhang, J., et al.: A bloom filter-powered technique supporting scalable semantic service discovery in service networks. In: Proceedings of the 23th IEEE International Conference on Web Services (ICWS 2016), pp. 81–90 (2016)Google Scholar
  14. 14.
    Oh, S., Lee, D., Kumara, S.: Effective web service composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput. 1, 15–32 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Wang, Z., Xu, X.: Mining bilateral patterns as priori knowledge for efficient service composition. In: Proceedings of the 23th IEEE International Conference on Web Services (ICWS 2016), pp. 65–72 (2016)Google Scholar
  16. 16.
    Najar, S., Pinheiro, M.K., Souveyet, C.: A context-aware intentional service prediction mechanism in PIS. In: Proceedings of the 21th IEEE International Conference on Web Services (ICWS 2014), pp. 662–669 (2014)Google Scholar
  17. 17.
    Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Mining user intents to compose services for end-users. In: Proceedings of the 23th IEEE International Conference on Web Services (ICWS 2016), pp. 348–355 (2016)Google Scholar
  18. 18.
    Li, H., Shen, H., Li, Z., Guo, J.: Reducing consistency checks in generating corrective explanations for interactive constraint satisfaction. Knowl.-Based Syst. 43, 103–111 (2013)CrossRefGoogle Scholar
  19. 19.
    Alessandro, P., Carlos, M., Matti, J., Joao, M.: Premise set caching for enumerating minimal correction subsets. In: Proceedings of the 32nd National Conference on Artificial Intelligence (AAAI 2018), pp. 6633–6640 (2018)Google Scholar
  20. 20.
    Nina, N., Nikolaj, B., Maria-Cristina, M., Mooly S.: Core-guided minimal correction set and core enumeration. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 1353–1361 (2018)Google Scholar
  21. 21.
    Al-Masri, E., Mahmoud, Q.H.: QoS-based discovery and ranking of web services. In: Proceedings of the 16th International Conference on Computer Communications and Networks (ICCCN 2007), pp. 529–534 (2007)Google Scholar
  22. 22.
    Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A.: Analysis of web services composition languages: the case of BPEL4WS. In: Proceedings of the 22th International Conference on Conceptual Modeling (ER 2003), pp. 200–215 (2003)CrossRefGoogle Scholar
  23. 23.
    da Silva, A., Mei, Y., Ma, H., Zhang, M.: A memetic algorithm-based indirect approach to web service composition. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC 2016), pp. 3385–3392 (2016)Google Scholar
  24. 24.
    da Silva, A., Hui, M., Zhang, M.: A graph-based particle swarm optimisation approach to QoS-aware web service composition and selection. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC 2014), pp. 3127–3134 (2014)Google Scholar
  25. 25.
    Jannach, D., Zanker, M., Fuchs, M.: Constraint-based recommendation in tourism: a multiperspective case study. Inf. Technol. Tourism 11, 139–155 (2009)CrossRefGoogle Scholar
  26. 26.
    Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004), pp. 167–172 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhihui Wu
    • 1
  • Piyuan Lin
    • 1
    Email author
  • Peijie Huang
    • 1
  • Huachong Peng
    • 1
  • Yihui He
    • 1
  • Junan Chen
    • 1
  1. 1.South China Agricultural UniversityGuangzhouChina

Personalised recommendations