Skip to main content

Exploring Concurrency and Reachability in the Presence of High Temporal Resolution

  • Chapter
  • First Online:

Part of the book series: Computational Social Sciences ((CSS))

Abstract

Network properties govern the rate and extent of spreading processes on networks, from simple contagions to complex cascades. Recent advances have extended the study of spreading processes from static networks to temporal networks, where nodes and links appear and disappear. We review previous studies on the effects of temporal connectivity for understanding the spreading rate and outbreak size of model infection processes. We focus on the effects of “accessibility”, whether there is a temporally consistent path from one node to another, and “reachability”, the density of the corresponding “accessibility graph” representation of the temporal network. We study reachability in terms of the overall level of temporal concurrency between edges, quantifying the overlap of edges in time. We explore the role of temporal resolution of contacts by calculating reachability with the full temporal information as well as with a simplified interval representation approximation that demands less computation. We demonstrate the extent to which the computed reachability changes due to this simplified interval representation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Armbruster, B., Wang, L., Morris, M.: Forward reachable sets: analytically derived properties of connected components for dynamic networks. Netw. Sci. 5(3), 328–354 (2017)

    Article  Google Scholar 

  2. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)

    Article  ADS  Google Scholar 

  3. Doherty, I.A., Shiboski, S., Ellen, J.M., Adimora, A.A., Padian, N.S.: Sexual bridging socially and over time: a simulation model exploring the relative effects of mixing and concurrency on viral sexually transmitted infection transmission. Sex. Transm. Dis. 33(6), 368–373 (2006)

    Article  Google Scholar 

  4. Eames, K.T.D., Keeling, M.J.: Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci. 189(2), 115–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Epstein, H., Morris, M.: Concurrent partnerships and HIV: an inconvenient truth. J. Int. AIDS Soc. 14(1), 13 (2011)

    Article  Google Scholar 

  6. Fournet, J., Barrat, A.: Contact patterns among high school students. PLoS One 9(9), 1–17 (2014)

    Article  Google Scholar 

  7. Gernat, T., Rao, V.D., Middendorf, M., Dankowicz, H., Goldenfeld, N., Robinson, G.E.: Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks. Proc. Natl. Acad. Sci. U.S.A. 115(7), 1433–1438 (2018)

    Article  ADS  Google Scholar 

  8. Gurski, K., Hoffman, K.: Influence of concurrency, partner choice, and viral suppression on racial disparity in the prevalence of HIV infected women. Math. Biosci. 282, 91–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71, 046119 (2005)

    Article  ADS  Google Scholar 

  10. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4(1), 4999 (2015)

    Article  Google Scholar 

  11. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  12. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.V.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    MATH  Google Scholar 

  13. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  14. Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133(2), 165–195 (1996)

    Article  MATH  Google Scholar 

  15. Lee, E., Emmons, S., Gibson, R., Moody, J., Mucha, P.J.: Concurrency and reachability in tree-like temporal networks. http://arxiv.org/abs/1905.08580 (2019)

  16. Lentz, H.H.K., Selhorst, T., Sokolov, I.M.: Unfolding accessibility provides a macroscopic approach to temporal networks. Phys. Rev. Lett. 110, 118701 (2013)

    Article  ADS  Google Scholar 

  17. Li, M., Rao, V.D., Gernat, T., Dankowicz, H.: Lifetime-preserving reference models for characterizing spreading dynamics on temporal networks. Sci. Rep. 8(1), 709 (2018)

    Article  ADS  Google Scholar 

  18. Lurie, M.N., Rosenthal, S.: The concurrency hypothesis in sub-saharan Africa: Convincing empirical evidence is still lacking. Response to Mah and Halperin, Epstein, and Morris. AIDS Behav. 14(1), 34–37 (2010)

    Article  Google Scholar 

  19. Mah, T.L., Halperin, D.T.: The evidence for the role of concurrent partnerships in africa’s HIV epidemics: a response to Lurie and Rosenthal. AIDS Behav. 14(1), 25–28 (2010)

    Article  Google Scholar 

  20. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  21. Masuda, N., Klemm, K., Eguíluz, V.M.: Temporal networks: slowing down diffusion by long lasting interactions. Phys. Rev. Lett. 111, 188701 (2013)

    Article  ADS  Google Scholar 

  22. May, R.M., Anderson, R.M.: Transmission dynainics of HIV infection. Nature 326, 137–142 (1987)

    Article  ADS  Google Scholar 

  23. May, R.M., Anderson, R.M.: The transmission dynamics of human immunodeficiency virus (HIV). Trans. R. Soc. Lond. B 321, 565–607 (1988)

    ADS  Google Scholar 

  24. Miller, J.C., Slim, A.C.: Saturation effects and the concurrency hypothesis: insights from an analytic model. PLoS One 12(11), e0187938 (2017)

    Article  Google Scholar 

  25. Moody, J.: The importance of relationship timing for diffusion: indirect connectivity and STD infections risk. Soc. Forces 81(1), 25–56 (2002)

    Article  Google Scholar 

  26. Moody, J., Benton, R.A.: Interdependent effects of cohesion and concurrency for epidemic potential. Ann. Epidemiol. 26(4), 241–248 (2016)

    Article  Google Scholar 

  27. Moody, J., White, D.R.: Structural cohesion and embeddedness: a hierarchical concept of social groups. Am. Sociol. Rev. 68(1), 103–127 (2003)

    Article  Google Scholar 

  28. Morris, M., Kretzschmar, M.: Concurrent partnerships and transmission dynamics in networks. Soc. Netw. 17(3), 299–318 (1995)

    Article  Google Scholar 

  29. Morris, M., Epstein, H., Wawer, M.: Timing is everything: international variations in historical sexual partnership concurrency and HIV prevalence. PLoS One 5(11), e14092 (2010)

    Article  ADS  Google Scholar 

  30. Onaga, T., Gleeson, J.P., Masuda, N.: Concurrency-induced transitions in epidemic dynamics on temporal networks. Phys. Rev. Lett. 119, 108301 (2017)

    Article  ADS  Google Scholar 

  31. Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci. 107(13), 5706–5711 (2010)

    Article  ADS  MATH  Google Scholar 

  32. Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS. Comput. Biol. 7(3), 1–9 (2011)

    Article  Google Scholar 

  33. Vazquez, A., Rácz, B., Lukács, A., Barabási, A.L.: Impact of non-poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

  34. Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108(1), 89–104 (1992)

    Article  MATH  Google Scholar 

  35. White, D., Newman, M.: Fast approximation algorithms for finding node-independent paths in networks. Santa Fe Institute Working Papers Series (2001). Available at SSRN: https://ssrn.com/abstract=1831790 or http://dx.doi.org/10.2139/ssrn.1831790

Download references

Acknowledgements

We thank Petter Holme and Jari Saramäki for the invitation to write this chapter. Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under Award Number R01HD075712. Additional support was provided by the James S. McDonnell Foundation 21st Century Science Initiative—Complex Systems Scholar Award (grant #220020315) and by the Army Research Office (MURI award W911NF-18-1-0244). The content is solely the responsibility of the authors and does not necessarily represent the official views of any supporting agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Mucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, E., Moody, J., Mucha, P.J. (2019). Exploring Concurrency and Reachability in the Presence of High Temporal Resolution. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_7

Download citation

Publish with us

Policies and ethics