Skip to main content

Weighted, Bipartite, or Directed Stream Graphs for the Modeling of Temporal Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

Abstract

We recently introduced a formalism for the modeling of temporal networks, that we call stream graphs. It emphasizes the streaming nature of data and allows rigorous definitions of many important concepts generalizing classical graphs. This includes in particular size, density, clique, neighborhood, degree, clustering coefficient, and transitivity. In this contribution, we show that, like graphs, stream graphs may be extended to cope with bipartite structures, with node and link weights, or with link directions. We review the main bipartite, weighted or directed graph concepts proposed in the literature, we generalize them to the cases of bipartite, weighted, or directed stream graphs, and we show that obtained concepts are consistent with graph and stream graph ones. This provides a formal ground for an accurate modeling of the many temporal networks that have one or several of these features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given any two sets X and Y , we denote by X × Y the cartesian product of X and Y , i.e. the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y . We denote by X ⊗ Y the set of all unordered pairs composed of x ∈ X and y ∈ Y , with x ≠ y, that we denote by xy = yx.

References

  1. Ahnert, S.E., Garlaschelli, D., Fink, T.M.A., Caldarelli, G.: Ensemble approach to the analysis of weighted networks. Phys. Rev. E 76, 016101 (2007)

    Article  ADS  Google Scholar 

  2. Alstott, J., Panzarasa, P., Rubinov, M., Bullmore, E.T., Vértes, P.E.: A unifying framework for measuring weighted rich clubs. Sci. Rep. 4, 7258 (2014)

    Article  ADS  Google Scholar 

  3. Amano, S.I., Ogawa, K.I., Miyake, Y.: Node property of weighted networks considering connectability to nodes within two degrees of separation. Sci. Rep. 8, 8464 (2018)

    Article  ADS  Google Scholar 

  4. Antoniou, I.E., Tsompa, E.T.: Statistical analysis of weighted networks. Discret. Dyn. Nat. Soc. 2008, 375452 (2008)

    Google Scholar 

  5. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. 101(11), 3747–3752 (2004)

    Article  ADS  Google Scholar 

  6. Battiston, S., Catanzaro, M.: Statistical properties of corporate board and director networks. Eur. Phys. J. B 38, 345–352 (2004)

    Article  ADS  Google Scholar 

  7. Bernardes, D., Diaby, M., Fournier, R., Françoise, F., Viennet, E.: A social formalism and survey for recommender systems. SIGKDD Explorations 16(2), 20–37 (2014)

    Article  Google Scholar 

  8. Bonacich, P: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)

    Article  Google Scholar 

  9. Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data. Soc. Netw. 19(3), 243–269 (1997)

    Article  Google Scholar 

  10. Breiger, R.L.: The duality of persons and groups. Soc. Forces 53(2), 181–190 (1974)

    Article  Google Scholar 

  11. Butts, C.T.: A relational event framework for social action. Sociol. Methodol. 38(1), 155–200 (2008)

    Article  Google Scholar 

  12. Candeloro, L., Savini, L.: A new weighted degree centrality measure: the application in an animal disease epidemic. PLoS One 11, e0165781 (2016)

    Article  Google Scholar 

  13. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)

    Google Scholar 

  14. Clemente, G.P., Grassi, R.: Directed clustering in weighted networks: a new perspective. Chaos, Solitons Fractals 107, 26–38 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Curzel, J.L., Lüders, R., Fonseca, K.V.O. and Rosa, M.O.: Temporal performance analysis of bus transportation using link streams. Math. Probl. Eng. 2019, 6139379 (2019)

    Google Scholar 

  16. Doreian, P.: A note on the detection of cliques in valued graphs. Sociometry 32, 237–242 (1969)

    Article  Google Scholar 

  17. Esfahlani, F.Z., Sayama, H.: A percolation-based thresholding method with applications in functional connectivity analysis. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds.) Complex Networks IX, pp. 221–231. Springer, Cham (2018)

    Chapter  Google Scholar 

  18. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76, 026107 (2007)

    Article  ADS  Google Scholar 

  19. Faust, K.: Centrality in affiliation networks. Soc. Netw. 19, 157–191 (1997)

    Article  Google Scholar 

  20. Grindrod, P.: Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E 66, 066702 (2002)

    Article  ADS  Google Scholar 

  21. Guillaume, J.L., Le Blond, S., Latapy, M.: Statistical analysis of a P2P query graph based on degrees and their time-evolution. In: Proceedings of the 6th International Workshop on Distributed Computing (IWDC). Lecture Notes in Computer Sciences (LNCS). Springer, Berlin (2004)

    Chapter  Google Scholar 

  22. Guillaume, J.L., Le Blond, S., Latapy, M.: Clustering in P2P exchanges and consequences on performances. In: Proceedings of the 4th International Workshop on Peer-to-Peer Systems (IPTPS). Lecture Notes in Computer Sciences (LNCS). Springer, Berlin (2005)

    Google Scholar 

  23. Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks. Inf. Process. Lett. 90(5), 215–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hakimi, S.L.: On the degrees of the vertices of a directed graph. J. Frankl. Inst. 279(4), 290–308 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalna, G., Higham, D.J.: A clustering coefficient for weighted networks, with application to gene expression data. AI Commun. 20, 263–271 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Latapy, M., Magnien, C., Del Vecchio, N.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31–48 (2008)

    Article  Google Scholar 

  27. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Mining 8(1), 1–61 (2018)

    Article  MATH  Google Scholar 

  28. Lind, P.G., González, M.C., Herrmann, H.J.: Cycles and clustering in bipartite networks. Phys. Rev. E 72, 056127 (2005)

    Article  ADS  Google Scholar 

  29. Lioma, C., Tarissan, F., Simonsen, J.G., Petersen, C., Larsen, B.: Exploiting the bipartite structure of entity grids for document coherence and retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval (ICTIR ’16), pp. 11–20. ACM, New York (2016)

    Google Scholar 

  30. Mazel, J., Casas, P., Fontugne, R., Fukuda, K., Owezarski, P.: Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection. Int. J. Netw. Manag. 25(5), 283–305 (2015)

    Article  Google Scholar 

  31. Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: The graph structure in the web—analyzed on different aggregation levels. J. Web Sci. 1, 33–47 (2015)

    Article  Google Scholar 

  32. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P. and Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM, New York (2007)

    Google Scholar 

  33. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  34. Newman, M.E.J.: Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Google Scholar 

  35. Newman, M.E.J.: Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Google Scholar 

  36. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)

    Article  ADS  Google Scholar 

  37. Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71, 065103 (2005)

    Article  ADS  Google Scholar 

  38. Opsahl, T.: Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)

    Article  Google Scholar 

  39. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  40. Opsahl, T., Colizza, V., Panzarasa, P., Ramasco, J.J.: Prominence and control: the weighted rich-club effect. Phys. Rev. Lett. 101, 168702 (2008)

    Article  ADS  Google Scholar 

  41. Opsahl, T, Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  42. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inf. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  43. Robins, G., Alexander, M.: Small worlds among interlocking directors: network structure and distance in bipartite graphs. Comput. Math. Organ. Theory 10(1), 69–94 (2004)

    Article  MATH  Google Scholar 

  44. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Article  ADS  Google Scholar 

  45. Serrano, M.Á., Boguná, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. 106(16), 6483–6488 (2009)

    Article  ADS  Google Scholar 

  46. Smith, K., Azami, H., Parra, M.A., Starr, J.M., Escudero, J.: Cluster-span threshold: an unbiased threshold for binarising weighted complete networks in functional connectivity analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2840–2843. IEEE, Piscataway (2015)

    Google Scholar 

  47. Stadtfeld, C., Block, P.: Interactions, actors, and time: Dynamic network actor models for relational events. Sociol. Sci. 4, 318–352 (2017)

    Article  Google Scholar 

  48. Viard, T., Fournier-S’niehotta, R., Magnien, C., Latapy, M.: Discovering patterns of interest in IP traffic using cliques in bipartite link streams. In: Proceedings of Complex Networks IX, pp. 233–241. Springer, Cham (2018)

    Chapter  Google Scholar 

  49. Wang, Y., Ghumare, E., Vandenberghe, R., Dupont, P.: Comparison of different generalizations of clustering coefficient and local efficiency for weighted undirected graphs. Neural Comput. 29, 313–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  51. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  52. Wehmuth, K., Fleury, E., Ziviani, A.: On multiaspect graphs. Theor. Comput. Sci. 651, 50–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wehmuth, K., Ziviani, A., Fleury, E.: A unifying model for representing time-varying graphs. In:2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA 2015), Campus des Cordeliers, Paris, pp. 1–10 (2015)

    Google Scholar 

  54. Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 1544–6115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, P., Wang, J., Li, X., Li, M., Di, Z., Fan, Y.: Clustering coefficient and community structure of bipartite networks. Phys. A Stat. Mech. Appl. 387(27), 6869–6875 (2008)

    Article  Google Scholar 

  56. Zlatic, V., Bianconi, G., Díaz-Guilera, A., Garlaschelli, D., Rao, F., Caldarelli, G.: On the rich-club effect in dense and weighted networks. Eur. Phys. J. B 67(3), 271–275 (2009)

    Article  ADS  Google Scholar 

  57. Zou, Z.: Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In: Procedings of MLG Workshop (2013)

    Google Scholar 

Download references

Acknowledgements

This work is funded in part by the European Commission H2020 FETPROACT 2016-2017 program under grant 732942 (ODYCCEUS), by the ANR (French National Agency of Research) under grants ANR-15-CE38-0001 (AlgoDiv), by the Ile-de-France Region and its program FUI21 under grant 16010629 (iTRAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Latapy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latapy, M., Magnien, C., Viard, T. (2019). Weighted, Bipartite, or Directed Stream Graphs for the Modeling of Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_3

Download citation

Publish with us

Policies and ethics