Skip to main content

Spreading of Infection on Temporal Networks: An Edge-Centered Perspective

  • Chapter
  • First Online:
Book cover Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

Abstract

We discuss a continuous-time extension of the contact-based (CB) model, as proposed in [Koher et al. Phys. Rev. X 9, 031017 (2019)], for infections with permanent immunity on temporal networks. At the core of our methodology is a fundamental change to an edge-centered perspective, which allows for an accurate model on temporal networks, where the underlying time-aggregated graph has a tree structure. From the continuous-time CB model, we derive the infection propagator for the low prevalence limit and propose a novel spectral criterion to estimate the epidemic threshold. In addition, we explore the relation between the continuous-time CB model and the previously proposed edge-based compartmental model, as well as the message-passing framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamer, W.H.: Lancet 1, 733 (1906)

    Google Scholar 

  2. Ross, R.: The Prevention of Malaria, E.P. Dutton, New York (1910)

    Google Scholar 

  3. Kermack, W.O., McKendrick, A.G.: Proc. R. Soc. A 115(772), 700 (1927)

    Article  ADS  Google Scholar 

  4. Bailey, N.T.J.: The Mathematical Theory of Epidemics. Hafner, Royal Oak (1957)

    Google Scholar 

  5. Anderson, R.H., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  6. Hethcote, H.W.: SIAM Rev. 42(4), 599 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  8. Bailey, N.T.J.: The mathematical theory of infectious diseases and its applications. In Mathematics in Medicine Series. Charles Griffin & Company Ltd., Bucks (1975)

    MATH  Google Scholar 

  9. Simon, P.L., Taylor, M., Kiss, I.Z.: J. Math. Biol. 62(4), 479 (2011)

    Article  MathSciNet  Google Scholar 

  10. Van Mieghem, P., Omic, J., Kooij, R.: IEEE/ACM Trans. Netw. 17(1), 1 (2009)

    Article  Google Scholar 

  11. Kiss, I.Z., Röst, G., Vizi, Z.: Phys. Rev. Lett. 115(7), 078701 (2015)

    Article  ADS  Google Scholar 

  12. Sherborne, N., Miller, J.C., Blyuss, K.B., Kiss, I.Z.: J. Math. Biol. 76(3), 755 (2018)

    Article  MathSciNet  Google Scholar 

  13. Karrer, B., Newman, M.E.J.: Phys. Rev. E 82, 016101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gonçalves, S., Abramson, G., Gomes, M.F.C.: Eur. Phys. J. B 81(3), 363 (2011)

    Article  ADS  Google Scholar 

  15. Van Mieghem, P., van de Bovenkamp, R.: Phys. Rev. Lett. 110, 108701 (2013)

    Article  ADS  Google Scholar 

  16. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  17. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Rev. Mod. Phys. 87, 925 (2015)

    Article  ADS  Google Scholar 

  18. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Proc. Natl. Acad. Sci. 106(51), 21484 (2009)

    Article  ADS  Google Scholar 

  19. Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Nature 429, 180 (2004)

    Article  ADS  Google Scholar 

  20. Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Nature 437(7056), 209 (2005)

    Article  ADS  Google Scholar 

  21. Halloran, M.E., Ferguson, N.M., Eubank, S., Longini, I.M., Cummings, D.A.T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T.C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C.A., Burke, D.S., Cooley, P.: Proc. Natl. Acad. Sci. 105(12), 4639 (2008)

    Article  ADS  Google Scholar 

  22. Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: PLOS Comput. Biol. 6(1), 1 (2010)

    Article  Google Scholar 

  23. Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E.: Science 309(5737), 1083 (2005)

    Article  ADS  Google Scholar 

  24. Merler, S., Ajelli, M., Pugliese, A.: PLOS Comput. Biol. 7(9), 1 (2011)

    Article  Google Scholar 

  25. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: In: Proceedings 22nd International Symposium on Reliable Distributed Systems, 2003 (2003), pp. 25–34

    Google Scholar 

  26. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  27. Rocha, L.E.C., Masuda, N.: Sci. Rep. 6, 31456 (2016)

    Article  ADS  Google Scholar 

  28. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008)

    Article  Google Scholar 

  29. Ganesh, A., Massoulié, L., Towsley, D.: In Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1455–1466. IEEE, Piscataway (2005)

    Google Scholar 

  30. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., Moreno, Y.: Europhys. Lett. 89(3), 38009 (2010)

    Article  ADS  Google Scholar 

  31. Youssef, M., Scoglio, C.: J. Theor. Biol. 283(1), 136 (2011)

    Article  Google Scholar 

  32. Pearl, J.: In: Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI’82, pp. 133–136. AAAI Press, Menlo Park (1982)

    Google Scholar 

  33. Karrer, B., Newman, M.E.J., Zdeborová, L., Phys. Rev. Lett. 113, 208702 (2014)

    Article  ADS  Google Scholar 

  34. Miller, J.C., Slim, A.C., Volz, E.M.: J. Royal Soc. Interface 9(70), 890 (2012)

    Article  Google Scholar 

  35. Lokhov, A.Y., Mézard, M., Ohta, H., Zdeborová, L.: Phys. Rev. E 90(1), 012801 (2014)

    Article  ADS  Google Scholar 

  36. Wilkinson, R.R., Ball, F.G., Sharkey, K.J.: J. Math. Biol. 75(6), 1563 (2017)

    Article  MathSciNet  Google Scholar 

  37. Koher, A., Lentz, H.H.K., Gleeson, J.P., Hövel, P.: Phys. Rev. X 9, 031017 (2019)

    Google Scholar 

  38. Miller, J.C.: PLoS One 9(7), 1 (2014)

    Article  Google Scholar 

  39. Miller, J.C., Volz, E.M.: J. Math. Biol. 67(4), 869 (2013)

    Article  MathSciNet  Google Scholar 

  40. Miller, J.C., Kiss, I.Z.: Math. Model. Nat. Phenom. 9(2), 4 (2014)

    Article  MathSciNet  Google Scholar 

  41. Eames, K.T.D., Keeling, M.J.: Proc. Natl. Acad. Sci. 99(20), 13330 (2002)

    Article  ADS  Google Scholar 

  42. Lindquist, J., Ma, J., van den Driessche, P., Willeboordse, F.H.: J. Math. Biol. 62(2), 143 (2011)

    Article  MathSciNet  Google Scholar 

  43. Kiss, I.Z., Morris, C.G., Sélley, F., Simon, P.L., Wilkinson, R.R.: J. Math. Biol. 70(3), 437 (2015)

    Article  MathSciNet  Google Scholar 

  44. Lokhov, A.Y.: Dynamic cavity method and problems on graphs. Theses, Université Paris Sud – Paris XI (2014)

    Google Scholar 

  45. Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., Zhang, P.: Proc. Natl. Acad. Sci. 110(52), 20935 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Valdano, E., Fiorentin, M.R., Poletto, C., Colizza, V.: Phys. Rev. Lett. 120(6), 068302 (2018)

    Article  ADS  Google Scholar 

  47. Speidel, L., Klemm, K., Eguiluz, V.M., Masuda, N.: New J. Phys. 18(7), 073013 (2016)

    Article  ADS  Google Scholar 

  48. Newman, M.E.J.: Phys. Rev. E 66(1), 016128 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. Molloy, M., Reed, B.: Random Struct. Algoritm. 6(2–3), 161 (1995)

    Article  Google Scholar 

  50. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  51. Miller, J.C.: Phys. Rev. E 76, 010101 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AK and PH acknowledge the support by Deutsche Forschungsgmeinschaft (DFG) in the framework of Collaborative Research Center 910. AK acknowledges further support by German Academic Exchange Service (DAAD) via a short-term scholarship. JPG acknowledges the support by Science Foundation Ireland (grant numbers 16/IA/4470 and 16/RC/3918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Hövel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koher, A., Gleeson, J.P., Hövel, P. (2019). Spreading of Infection on Temporal Networks: An Edge-Centered Perspective. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_13

Download citation

Publish with us

Policies and ethics