Skip to main content

Continuous-Time Random Walks and Temporal Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

  • 1633 Accesses

Abstract

Real-world networks often exhibit complex temporal patterns that affect their dynamics and function. In this chapter, we focus on the mathematical modelling of diffusion on temporal networks, and on its connection with continuous-time random walks. In that case, it is important to distinguish active walkers, whose motion triggers the activity of the network, from passive walkers, whose motion is restricted by the activity of the network. One can then develop renewal processes for the dynamics of the walker and for the dynamics of the network respectively, and identify how the shape of the temporal distribution affects spreading. As we show, the system exhibits non-Markovian features when the renewal process departs from a Poisson process, and different mechanisms tend to slow down the exploration of the network when the temporal distribution presents a fat tail. We further highlight how some of these ideas could be generalised, for instance to the case of more general spreading processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balescu, R.: Statistical Dynamics: Matter Out of Equilibrium. Imperial College, London (1997)

    Book  Google Scholar 

  2. Klafter, J., Sokolov, I.M.: First Steps in Random Walks: From Tools to Applications. Oxford University Press, New York (2011)

    Book  Google Scholar 

  3. Lovász, L., et al.: Random walks on graphs: a survey. Combinatorics, Paul Erdos is Eighty 2(1), 1–46 (1993)

    Google Scholar 

  4. Masuda, N., Porter, M.A., Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2996–3000. IEEE, Piscataway (2005)

    Google Scholar 

  6. Brin, S., Page, L.: Anatomy of a large-scale hypertextual web search engine. In: Proceedings of the Seventh International World Wide Web Conference, pp. 107–117 (1998)

    Google Scholar 

  7. Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and Link Analysis. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  8. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)

    Article  ADS  Google Scholar 

  9. Delvenne, J.C., Yaliraki, S.N., Barahona, M.: Stability of graph communities across time scales. Proc. Natl. Acad. Sci. USA 107, 12755–12760 (2010)

    Article  ADS  Google Scholar 

  10. Lambiotte, R., Delvenne, J.C., Barahona, M.: Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 1, 76–90 (2014)

    Google Scholar 

  11. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  12. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  13. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015)

    Article  Google Scholar 

  14. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, London (1996)

    MATH  Google Scholar 

  15. Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)

    Article  ADS  Google Scholar 

  16. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. 105(47), 18153–18158 (2008)

    Article  ADS  Google Scholar 

  17. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ispolatov, I., Krapivsky, P.L., Yuryev, A.: Duplication-divergence model of protein interaction network. Phys. Rev. E 71(6),061911 (2005)

    Article  ADS  Google Scholar 

  19. Lambiotte, R., Krapivsky, P.L., Bhat, U., Redner, S.: Structural transitions in densifying networks. Phys. Rev. Lett. 117(21), 218301 (2016)

    Article  ADS  Google Scholar 

  20. Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33, 438–443 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Masuda, N., Takaguchi, T., Sato, N., Yano, K.: Self-exciting point process modeling of conversation event sequences. In: Temporal Networks, pp. 245–264. Springer, Berlin (2013)

    Google Scholar 

  22. Kobayashi, R., Lambiotte, R.: Tideh: time-dependent hawkes process for predicting retweet dynamics. In: Tenth International AAAI Conference on Web and Social Media (2016)

    Google Scholar 

  23. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462 (2006)

    Article  ADS  Google Scholar 

  24. Perraudin, N., Vandergheynst, P.: Stationary signal processing on graphs. IEEE Trans. Signal Process. 65(13), 3462–3477 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chung, F.R.K., Graham, F.C.: Spectral Graph Theory. Number 92. American Mathematical Society, Providence (1997)

    Google Scholar 

  26. De Nigris, S., Hastir, A., Lambiotte, R.: Burstiness and fractional diffusion on complex networks. Eur. Phys. J. B 89(5), 114 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hoffmann, T., Porter, M.A., Lambiotte, R.: Generalized master equations for non-Poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)

    Article  ADS  Google Scholar 

  28. Speidel, L., Lambiotte, R., Aihara, K., Masuda, N.: Steady state and mean recurrence time for random walks on stochastic temporal networks. Phys. Rev. E 91, 012806 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Allen, A.O.: Probability, Statistics, and Queueing Theory: With Computer Science Applications, 2nd edn. Academic Press, Boston (1990)

    MATH  Google Scholar 

  30. Saramäki, J., Holme, P.: Exploring temporal networks with greedy walks. Eur. Phys. J. B 88(12), 334 (2015)

    Article  ADS  Google Scholar 

  31. Gueuning, M., Lambiotte, R., Delvenne, J.-C.: Backtracking and mixing rate of diffusion on uncorrelated temporal networks. Entropy 19(10), 542 (2017)

    Article  ADS  Google Scholar 

  32. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)

    Article  ADS  Google Scholar 

  33. Moinet, A., Starnini, M., Pastor-Satorras, R.: Random walks in non-poissoinan activity driven temporal networks. arXiv preprint arXiv:1904.10749 (2019)

    Google Scholar 

  34. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114(10), 108701 (2015)

    Article  ADS  Google Scholar 

  35. Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C.J., Schweitzer, F.: Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nat. Commun. 5, 5024 (2014)

    Article  ADS  Google Scholar 

  36. Lambiotte, R., Rosvall, M., Scholtes, I.: From networks to optimal higher-order models of complex systems. Nat. Phys. 1 (2019)

    Google Scholar 

  37. Petit, J., Gueuning, M., Carletti, T., Lauwens, B., Lambiotte, R.: Random walk on temporal networks with lasting edges. Phys. Rev. E 98(5), 052307 (2018)

    Article  ADS  Google Scholar 

  38. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: Seismic: a self-exciting point process model for predicting tweet popularity. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1513–1522. ACM, New York (2015)

    Google Scholar 

Download references

Acknowledgements

I would like to thank my many collaborators without whom none of this work would have been done and, in particular, Naoki Masuda for co-writing [14] that was a great inspiration for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Lambiotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lambiotte, R. (2019). Continuous-Time Random Walks and Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_12

Download citation

Publish with us

Policies and ethics