Skip to main content

The Rove Beetle Creophilus maxillosus as a Model System to Study Asymmetric Division, Oocyte Specification, and the Germ-Somatic Cell Signaling

  • Chapter
  • First Online:
Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

Creophilus maxillosus (Staphylinidae, Coleoptera, Polyphaga) has a meroistic-telotrophic ovary composed of tropharium, which contains trophocytes (nurse cells) and vitellarium, which contains growing oocytes. The trophocytes are connected to the oocytes by cytoplasmic nutritive cords, which deliver nutrients to the oocytes. The formation/differentiation of the oocytes and trophocytes takes place in the pupal ovary within linear chains of sibling cells. Each chain is composed of a single oocyte connected to a linear chain of sister trophocytes. The nuclei of the oocytes contain an extrachromosomal DNA body (extra DNA body) consisting of amplified ribosomal DNA (rDNA). During oogenesis, the prospective oocyte, located at the base (posterior) of each chain, is the only cell within the chain that amplifies rDNA and retains permanent contact with the somatic pre-follicular cells. The oogonial divisions leading to the formation of the oocyte/trophocytes chain are asymmetric, and during consecutive divisions, the rDNA body always segregates basally (posteriorly) to the prospective oocyte abutted on the somatic cells. However, the segregation of rDNA is imperfect, and within each oocyte/trophocytes chain, there is a gradient of rDNA: the prospective oocyte has the highest amount of rDNA and the trophocyte that is most distant (most anterior) from the oocyte has no or the lowest amount of rDNA. In addition, the divisions within each chain are parasynchronous, with the pro-oocyte being the most mitotically advanced cell in the chain. These observations indicate the presence of a signaling gradient emanating from the somatic cells and/or oocyte; this gradient diminishes in strength with the increasing distance from its source, i.e., the oocyte/somatic cells. Because of this phenomenon, C. maxillosus is the perfect model in which to study the germ-somatic cell interactions and signaling. This chapter describes the methods for the collection and laboratory culture of C. maxillosus and the analysis of divisions and signaling in the C. maxillosus ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bang C, Cheng J (2015) Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions. PLoS One 10(4):e0123294. https://doi.org/10.1371/journal.pone.0123294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brubacher JL, Huebner E (2011) Evolution and development of polarized germ cell cysts: new insights from a polychaete worm, Ophryotrocha labronica. Dev Biol 357:96–107

    Article  CAS  Google Scholar 

  • Buning J (1979a) The trophic tissue of telotrophic ovarioles in polyphage Coleoptera. Zoomorphology 93:33–50

    Article  Google Scholar 

  • Buning J (1979b) The telotrophic nature of ovarioles of polyphage Coleoptera. Zoomorphology 93:51–57

    Article  Google Scholar 

  • Buning J (1993) Germ cell cluster formation in insect oocytes. Int J Insect Morphol Embryol 22:237–253

    Article  Google Scholar 

  • Buning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman & Hall, London

    Book  Google Scholar 

  • Cave MD (1972) Localization of ribosomal DNA within oocytes of the house cricket, Acheta domesticus (Orthoptera: Gryllidae). J Cell Biol 55:310–321

    Article  CAS  Google Scholar 

  • Dajoz R, Caussanel C (1968) Morphologic et biologie d’un Coleoptere predateur: Creophilus maxillosus (L.) (Staphylinidae). Cah Nat (N ser) 24:65–102

    Google Scholar 

  • Deng W, Lin H (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 189:79–94

    Article  CAS  Google Scholar 

  • Deng W, Lin H (2001) Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int Rev Cytol 203:93–138

    Article  CAS  Google Scholar 

  • Fichelson P, Huynh JR (2007) Asymmetric divisions of germline cells. Prog Mol Subcell Biol 45:97–120

    Article  CAS  Google Scholar 

  • FrÄ…tczak K, Matuszewski S (2014) Instar determination in forensically useful beetles Necrodes littoralis (Silphidae) and Creophilus maxillosus (Staphylinidae). Forensic Sci Int 241:20–26

    Article  Google Scholar 

  • Godt D, Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395:387–391

    Article  CAS  Google Scholar 

  • Gonzalez-Reyes A, St. Johnston D (1998) The Drosophila AP axis is polarized by the cadherin-mediated positioning of the oocyte. Development 125:3635–3644

    CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A, Elliott H, St. Johnston D (1997) Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. Development 124:4927–4937

    CAS  PubMed  Google Scholar 

  • Huynh J-R (2018) Fusome as a cell-cell communication channel of Drosophila ovarian cyst. Madame Curie Bioscience Database [Internet]

    Google Scholar 

  • Jaglarz M (1992) Peculiarities of the organization of egg chambers in carabid ground beetles and their phylogenetic implications. Tissue Cell 24:397–409

    Article  CAS  Google Scholar 

  • Jaglarz M (1998) The number that counts. Phylogenetic implications of the number of nurse cells in ovarian follicles of Coleoptera-Adephaga. Folia Histochem Cytobiol 36:167–178

    CAS  PubMed  Google Scholar 

  • Kloc M (1980) Extrachromosomal DNA and its activity in RNA synthesis in oogonia and oocytes in the pupal ovary of Creophilus maxillosus (Staphylinidae, Coleoptera-Polyphaga). Eur J Cell Biol 21:328–334

    CAS  PubMed  Google Scholar 

  • Kloc M, Matuszewski B (1977) Extrachromosomal DNA and the origin of oocytes in the telotrophic-meroistic ovary of Creophilus maxillosus (L) (Staphylinidae Coleoptera-Polyphaga). Wilhelm Roux’s Arch 183:351–368

    Article  Google Scholar 

  • Kloc M, Matuszewski B, Nurkowska J (1995) Ribosomal gene amplification in the oocytes of Creophilus maxillosus (Staphylinidae, Coleoptera-polyphaga) – an insect with telotrophic ovaries. Folia Histochem Cytobiol 33:267–276

    CAS  PubMed  Google Scholar 

  • Kloc M, Larabell C, Chan AP, Etkin LD (1998) Contribution of METRO pathway localized molecules to the organization of the germ cell lineage. Mech Dev 75:81–93

    Article  CAS  Google Scholar 

  • Kloc M, Bilinski S, Dougherty MT, Brey EM, Etkin LD (2004) Formation, architecture and polarity of female germline cyst in Xenopus. Dev Biol 266:43–61

    Article  CAS  Google Scholar 

  • León A, McKearin D (1999) Identification of TER94, an AAA ATPase protein, as a bam-dependent component of the Drosophila fusome. Mol Biol Cell 10:3825–3834

    Article  Google Scholar 

  • Lin H, Spradling AC (1995) Fusome asymmetry and oocyte determination in drosophila. Dev Genet 16:6–12

    Article  CAS  Google Scholar 

  • Matuszewski B, Kloc M (1976) Gene amplification in oocytes of the rove beetle Creophilus maxillosus (Staphylinidae, Coleoptera-Polyphaga). Experientia 32:34–36

    Article  CAS  Google Scholar 

  • Matuszewski B, Ciechomski K, Nurkowska J, Kloc M (1985) The linear clusters of oogonial cells in the development of telotrophic ovarioles in polyphage Coleoptera. Wilhelm Roux’s Arch Dev Biol 194:462–469

    Article  Google Scholar 

  • Matuszewski B, Ciechomski K, Kloc M (1999) Extrachromosomal rDNA and polarity of pro-oocytes during ovary development in Creophilus maxillosus (Coleoptera, Staphylinidae). Folia Histochem Cytobiol 37:179–190

    CAS  PubMed  Google Scholar 

  • Mazurkiewicz M, Kubrakiewicz J (2002) Nucleolar activity of germ cells in polytrophic ovaries of crane flies (Diptera: Tipulidae). Ultrastructural and cytochemical studies. Folia Histochem Cytobiol 40:47–50

    PubMed  Google Scholar 

  • Megraw TL, Kaufman TC (2000) The centrosome in Drosophila oocyte development. Curr Top Dev Biol 49:385–407

    Article  CAS  Google Scholar 

  • Miyauchi C, Kitazawa D, Ando I, Hayashi D, Inoue YH (2013) Orbit/CLASP is required for germline cyst formation through its developmental control of fusomes and ring canals in Drosophila males. PLoS One 8(3):e58220. https://doi.org/10.1371/journal.pone.0058220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snapp EL, Iida T, Frescas D, Lippincott-Schwartz J, Lilly MA (2004) The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol Biol Cell 15:4512–4521

    Article  CAS  Google Scholar 

  • Szklarzewicz T, Wnek A, Bilinski SM (2000) Structure of ovarioles in Adelges laricis, a representative of primitive family Adelgidae. Acta Zool (Stockholm) 81:307–313

    Article  Google Scholar 

  • Trendelenburg MF, Franke WW, Scheer U (1977) Frequencies of circular units of nucleolar DNA in oocytes of two insects, Acheta domesticus and Dytiscus marginalis, and changes of nucleolar morphology during oogenesis. Differentiation 7:133–158

    Article  CAS  Google Scholar 

  • van Eeden F, St. Johnston D (1999) The polarization of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Opin Genet Dev 9:396–404

    Article  Google Scholar 

  • Varadarajan R, Ayeni J, Jin Z, Homola E, Campbell SD (2016) Myt1 inhibition of cyclin a/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes. Mol Biol Cell 27:2051–2063

    Article  Google Scholar 

  • Zhang Y, Kalderon D (2000) Regulation of cell proliferation and patterning in Drosophila oogenesis by hedgehog signaling. Development 127:2165–2176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am very grateful to Tom Murray, Dr. Salvador Vitanza-Hedman, Dr. Szymon Matuszewski and Anna MÄ…dra-Bielewicz, MSc for allowing me to use their photographs of Creophilus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kloc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kloc, M. (2019). The Rove Beetle Creophilus maxillosus as a Model System to Study Asymmetric Division, Oocyte Specification, and the Germ-Somatic Cell Signaling. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_9

Download citation

Publish with us

Policies and ethics