Skip to main content

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

Imagine that in 1678 you are Christiaan Huygens or Antonie van Leeuwenhoek seeing paramecia swim gracefully across the field of view of your new microscope. These unicellular, free-living, and swimming cells might have remained a curiosity if not for the ability of H.S. Jennings (Behavior of the lower organisms. Indiana University Press, Bloomington, 1906) and T.M. Sonneborn (Proc Natl Acad Sci USA 23:378–385, 1937) to recognize them for their behavior and genetics, both Mendelian and non-Mendelian. Following many years of painstaking work by Sonneborn and other researchers, Paramecium now serves as a modern model organism that has made specific contributions to cell and molecular biology and development. We will review the continuing usefulness and contributions of Paramecium species in this chapter.

Even without a microscope, Paramecium species is visible to the naked eye because of their size (50–300 μ long). Paramecia are holotrichous ciliates, that is, unicellular organisms in the phylum Ciliophora that are covered with cilia. It was the beating of these cilia that propelled them across the slides of the first microscopes and continue to fascinate us today. Over time, Paramecium became a favorite model organism for a large variety of studies. Denis Lyn has called Paramecium the “white rat” of the Ciliophora for their manipulability and amenity to research. We will touch upon the use of Paramecium species to examine swimming behavior, ciliary structure and function, ion channel function, basal body duplication and patterning, non-Mendelian cortical inheritance, programmed DNA rearrangements, regulated secretion and exocytosis, and cell trafficking. In particular, we will focus on the use of P. tetraurelia and P. caudatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RD (1971) Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol 49:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen S, Nowacki M (2017) Necessity is the mother of invention: ciliates, transposons, and transgenerational inheritance. Trends Genet 33:197–207

    Article  CAS  PubMed  Google Scholar 

  • Arnaiz O, Cain S, Cohen J, Sperling L (2007) ParameciumDB: a community resource that integrates the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids Res 35:D439–D444

    Article  CAS  PubMed  Google Scholar 

  • Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Cohen J (2009) Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford) 2009:bap022

    Article  CAS  Google Scholar 

  • Arnaiz O, Mathy N, Baudry D, Malinsky S, Aury J, Denby W, Garnier O, Labadie K, Lauderdale B, LeMouel A, Marmington A, Nowacki M, Poulain J, Prajer M, Wincker P, Meyer E, Duharcourt S, Duret L, Betermier M, Sperling L (2012) The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 8:e1002984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaiz O, Van Dijk E, Bétermier M, Lhuillier-Akakpo M, de Vanssay A, Duharcourt S, Sallet E, Gouzy J, Sperling L (2017) Improved methods and resources for Paramecium genomics: transcription units, gene annotation and gene expression. BMC Genomics 18:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aubusson-Fleury A, Lemullois M, de Loubresse N-G, Laligné C, Cohen J, Rosnet O, Jerka-Dziadosz M, Beisson J, Koll F (2012) The conserved centrosomal protein FOR20 is required for assembly of the transition zone and basal body docking at the cell surface. J Cell Sci 125:4395–4404

    Article  CAS  PubMed  Google Scholar 

  • Aubusson-Fleury A, Lemullois M, Bengueddach H, Abdallah S, Shi L, Cohen J, Tassin AM, Koll F (2015) Transition zone: the sequential assembly of its components parallels its dual role in basal body anchoring and ciliary function. Cilia 4(Suppl 1):P26

    Article  PubMed Central  Google Scholar 

  • Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche Camara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, LeMouel A, Lepere G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Betermier M, Weissenbach J, Scarpelli C, Schachter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  • Beisson J, Sonneborn TM (1965) Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc Natl Acad Sci USA 53:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisson J, Clerot JC, Fleuro-Aubusson A, Garreau de Loubresse N, Ruiz F, Klotz C (2001) Basal body-associated nucleation center for the centrin-based cortical cytoskeletal network in Paramecium. Protist 152:339–354

    Article  CAS  PubMed  Google Scholar 

  • Beisson J, Betermier M, Bre M-H, Cohen J, Duharcourt S, Duret L, Kung C, Malinsky S, Meyer E, Preer J, Sperling L (2010) Paramecium tetraurelia: renaissance of an early unicellular model. In: Crotty D, Grann A (eds) Emerging model organisms, vol 2. Cold Spring Harbor Press, New York, pp 1–30

    Google Scholar 

  • Bischerour J, Bhullar S, Wilkes C, Regnier V, Mathy N, Dubois E, Singh A, Swart E, Arnaiz O, Sperling L, Nowacki M, Betermier M (2018) Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. eLife 7:e37927

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehm P, Eckert R (1978) An electrophysiological study of the regulation of ciliary beating fre quency in Paramecium. J Physiol 283:557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonanno F, Harumoto T, Ortenzi C (2013) The defensive function of trichocysts in Paramecium tetraurelia against metazoan predators compared with the chemical defense of two species of toxin-containing ciliates. Zool Sci 30:255–261

    Article  CAS  Google Scholar 

  • Capdeville Y, Benwakrim A (1996) The major ciliary membrane proteins in Paramecium primaurelia are all glycosylphosphatidylinositol-anchored proteins. Eur J Cell Biol 70:339–346

    CAS  PubMed  Google Scholar 

  • Chalker DL, Stover NA (2007) Genome evolution: a double take for Paramecium. Curr Biol 17:R97–R99

    Article  CAS  PubMed  Google Scholar 

  • Chang S-Y, Van Houten JL, Robles LJ, Lui SS, Kung C (1976) An extensive behavioural and genetic analysis of the Pawn mutants in Paramecium aurelia. Gene Res 23:165–173

    Article  Google Scholar 

  • Cohen J, Beisson J (1980) Genetic analysis of the relationships between the cell surface and the nuclei in Paramecium tetraurelia. Genetics 95:797–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert R (1972) Bioelectric control of ciliary activity. Science 176:473–481

    Article  CAS  PubMed  Google Scholar 

  • Eckert R, Naitoh Y (1972) Bioelectric control of locomotion in the ciliates. J Protozool 19:237–243

    Article  CAS  PubMed  Google Scholar 

  • Galvani A, Sperling L (2002) RNA interference by feeding in Paramecium. Trends Genet 18:11–12

    Article  CAS  PubMed  Google Scholar 

  • Görtz H-D (1988) Endocytobiosis. In: Görtz H-D (ed) Paramecium. Springer, Berlin

    Chapter  Google Scholar 

  • Haga N, Saimi Y, Takahashi M, Kung C (1983) Intra- and interspecific complementation of membrane-inexcitable mutants of Paramecium. J Cell Biol 97:378–382

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki T, Barkalow K, Richmond J, Satir P (1991) cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci USA 88:7918–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausmann K, Allen RD (2010) Electron microscopy of Paramecium (Ciliata). In: Müller-Reichert T (ed) Methods in cell biology, vol 96. Academic Press, New York, pp 143–173

    Google Scholar 

  • Haynes WJ, Vaillant B, Preston RR, Saimi Y, Kung C (1998) The cloning by complementation of the pawn-A gene in Paramecium. Genetics 149:947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes WJ, Ling KY, Preston RR, Saimi Y, Kung C (2000) The cloning and molecular analysis of pawn-B in Paramecium tetraurelia. Genetics 155:1105–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes WJ, Kung C, Saimi Y, Preston RR (2002) An exchanger-like protein underlies the large Mg2+ current in Paramecium. Proc Natl Acad Sci USA 99:15717–15722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husser M, Hardt M, Blanchard MP, Hentschel J, Klauke N, Plattner H (2004) One-way calcium spill-over during signal transduction in Paramecium cells: from cortex into cilia but not the reverse. Cell Calcium 36:349–358

    Article  CAS  PubMed  Google Scholar 

  • Iftode F, Cohen J, Ruiz F, Rueda AT, Chen-Shan L, Adoutte A (1989) Development of surface pattern during division in Paramecium. I. Mapping of duplication and reorganization of cortical cytoskeletal structures in the wild type. Development 105:191–211

    Google Scholar 

  • Jennings H (1906) Behavior of the lower organisms. Indiana University Press, Bloomington

    Book  Google Scholar 

  • Kissmehl R, Sehring I, Wagner E, Plattner H (2004) Immunolocalization of actin in Paramecium cells. J Histochem Cytochem 52:1543–1559

    Article  CAS  PubMed  Google Scholar 

  • Kissmehl R, Schilde C, Wassmer T, Danzer C, Nuehse K, Lutter K, Plattner H (2007) Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8(5):523–542

    Article  CAS  PubMed  Google Scholar 

  • Klauke N, Blanchard MP, Plattner H (2000) Polyamine triggering of exocytosis in Paramecium involves and extracellular Ca2+/(polyvalent)cation-sensing receptor, subplasmalemmal Ca-store mobilization and store-operated Ca2+-influx via unspecific cation channels. J Membr Biol 174:141–156

    Article  CAS  PubMed  Google Scholar 

  • Kung C (1971) Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics 69:29–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kung C, Chang S, Satow Y, Van Houten J, Hansma H (1975) Genetic dissection of behavior in Paramecium. Science 188:898–904

    CAS  PubMed  Google Scholar 

  • Kung C, Preston RR, Maley ME, Ling KY, Kanabrocki JA, Seavey BR, Saimi Y (1992) In vivo Paramecium mutants show that calmodulin orchestrates membrane responses to stimuli. Cell Calcium 13:413–425

    Article  CAS  PubMed  Google Scholar 

  • Kutomi O, Hori M, Ishida M, Tominaga T, Kamachi H, Koll F, Cohen J, Yamada N, Noguchi M (2012) Outer dynein arm light chain 1 is essential for controlling the ciliary response to cyclic AMP in Paramecium tetraurelia. Eukaryot Cell 11:645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mouel A, Butler A, Caron F, Meyer E (2003) Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryot Cell 2:1076–1090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lodh S, Yano J, Valentine MS, Van Houten JL (2016) Voltage-gated calcium channels of Paramecium. J Exp Biol 219:3028–3038

    Article  PubMed  PubMed Central  Google Scholar 

  • Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RFX, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR, Jiang YY, Lechtreck K, Dentler W, Gaertig J (2018) Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 217:4298–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machemer H (1988a) Electrophysiology. In: Gortz H-D (ed) Paramecium. Springer, Berlin, pp 186–215

    Google Scholar 

  • Machemer H (1988b) Motor control of cilia. In: Görtz H-D (ed) Paramecium. Springer, Berlin, pp 216–235

    Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marker S, Carradec Q, Tanty V, Arnaiz O, Meyer E (2014) A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia. Nucleic Acids Res 23:1–13

    Google Scholar 

  • Matsuda A, Saim Y, Takahashi M (2000) An unusual complementation in non-excitable mutants in Paramecium. Genet Res 76:125–133

    Article  CAS  PubMed  Google Scholar 

  • Miyake A, Haroumoto T (1996) Defensive function of trichocysts in Paramecium against the predatory ciliate Monadenium balbiani. Eur J Protistol 32:128–133

    Article  Google Scholar 

  • Nabi MA (2018) Multiple functions of the striated rootlet proteins of the Paramecium basal body. PhD thesis, University of Vermont

    Google Scholar 

  • Noguchi M, Kurahashi S, Kamachi H, Inoue H (2004) Control of the ciliary beat by cyclic nucleo tides in intact cortical sheets from Paramecium. Zool Sci 21:1167–1175

    Article  CAS  Google Scholar 

  • Oami K, Takahashi M (2003) K+-induced Ca2+ conductance responsible for the prolonged backward swimming in K+-agitated mutant of Paramecium caudatum. J Membr Biol 195:85–92

    Article  CAS  PubMed  Google Scholar 

  • Orias E, Singh DP, Meyer E (2017) Genetics and epigenetics of mating type determination in Paramecium and Tetrahymena. Annu Rev Microbiol 71:133–156

    Article  CAS  PubMed  Google Scholar 

  • Paquette CA, Rakochy V, Bush A, Van Houten JL (2001) Glycophosphatidylinositol-anchored proteins in Paramecium tetraurelia: possible role in chemoresponse. J Exp Biol 204:2899–2910

    CAS  PubMed  Google Scholar 

  • Plattner H (2010) Membrane trafficking in protozoa: SNARE proteins, H+ -ATPase, actin, and other key players in ciliates. Int Rev Cell Mol Biol 280:79–184

    Article  CAS  PubMed  Google Scholar 

  • Plattner H (2013) Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 61:95–114

    Article  PubMed  CAS  Google Scholar 

  • Plattner H (2016) Trichocysts—Paramecium’s projectile-like secretory organelles. J Eukaryot Microbiol 64:106–133

    Article  PubMed  CAS  Google Scholar 

  • Plattner H, Klauke N (2001) Calcium in ciliated Protozoa: sources, regulation and calcium-regulated cell functions. Int Rev Cytol 201:115–208

    Article  CAS  PubMed  Google Scholar 

  • Preston RR (1990) Genetic dissection of Ca2+dependent ion channel function in Paramecium. BioEssays 12:273–228

    Article  CAS  PubMed  Google Scholar 

  • Preston RR, Kung C (1994) Isolation and characterization of Paramecium mutants defective in their response to magnesium. Genetics 137:759–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preston RR, Martinac Y, SC KC (1992) Genetic analysis of ion channels of prokaryotes and lower eukaryotes. Curr Opin Genet Dev 2:780–784

    Article  CAS  PubMed  Google Scholar 

  • Ruiz F, Vayssie L, Klotz C, Sperling L, Madeddu L (1998) Homology-dependent gene silencing in Paramecium. Mol Biol Cell 9:931–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satir P, Heuser T, Sale W (2014) A structural basis for how motile cilia beat. Bioscience 64:1073–1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Satow Y, Kung C (1980a) Ca-induced K+-outward current in Paramecium tetraurelia. J Exp Biol 88:293–303

    CAS  PubMed  Google Scholar 

  • Satow Y, Kung C (1980b) Membrane currents of Pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol 84:57–71

    CAS  PubMed  Google Scholar 

  • Schilde C, Wassmer T, Mansfeld J, Plattner H, KissmehI R (2006) A multigene family encoding R-SNAREs in the ciliate Paramecium tetraurelia. Traffic 7:440–455

    Article  CAS  PubMed  Google Scholar 

  • Schilde C, Schönemann B, Sehring IM, Plattner H (2010) Distinct subcellular localization of a group of synaptobrevin-like SNAREs in Paramecium tetraurelia and effects of silencing SNARE-specific chaperone NSF. Eukaryot Cell 9:288–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz JE, Klumpp S, Benz R, Schurhoff-Goeters WJ, Schmid A (1992) Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255:600–603

    Article  CAS  PubMed  Google Scholar 

  • Sehring IM, Reiner C, Mansfeld J, Plattner H, Kissmehl R (2007) A broad spectrum of actin paralogs in Paramecium tetraurelia cells display differential localization and function. J Cell Sci 120:177–190

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–452

    Article  CAS  PubMed  Google Scholar 

  • Sonneborn T (1937) Sex, sex inheritance and sex determination in Paramecium aurelia. Proc Natl Acad Sci USA 23:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugibayashi R, Harumoto T (2000) Defensive function of trichocysts in Paramecium tetraurelia against heterotrich ciliate Climacostomum virens. Eur J Protistol 36:415–422

    Article  Google Scholar 

  • Takahashi M (1979) Behavioral mutants in Paramecium caudatum. Genetics 91:393–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tassin A-M, Lemullois M, Aubusson-Fleury A (2016) Paramecium tetraurelia basal body structure. Cilia 5:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valentine M, Yano Y, Van Houten J (2010) Chemosensory transduction in Paramecium. Jpn J Protozool 41:1–8

    Google Scholar 

  • Valentine MS, Rajendran A, Yano J, Weeraratne SD, Beisson J, Cohen J, Koll F, Van Houten J (2012) Paramecium BBS genes are key to presence of channels in cilia. Cilia 1:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Houten JL (1979) Membrane potential changes during chemokinesis in Paramecium. Science 204:1100–1103

    Article  PubMed  Google Scholar 

  • Van Houten J (1998) Chemosensory transduction in Paramecium. Eur J Protistol 34:301–307

    Article  Google Scholar 

  • Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, Linder JU (2004) Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Braun C, Plattner H, Purvee J, Van Houten JL (1997) Cyclic nucleotides in glutamate chemosensory signal transduction of Paramecium. J Cell Sci 110:1567–1572

    Google Scholar 

  • Yano J, Rajendran A, Valentine MS, Saha M, Ballif BA, Van Houten JL (2013) Proteomic analysis of the cilia membrane of Paramecium tetraurelia. J Proteome 78:113–122

    Article  CAS  Google Scholar 

  • Zagulski M, Nowak JK, LeMouel A, Nowacki M, Migdalski A, Gromadka R, Noel B, Blanc I, Dessen P, Wincker P, Keller AM, Cohen J, Meyer E, Sperling L (2004) High coding density on the largest Paramecium tetraurelia somatic chromosome. Curr Biol 14:1397–1404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Megan Valentine and Dr. Ashik Nabi for contributing images to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Van Houten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Houten, J. (2019). Paramecium Biology. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_13

Download citation

Publish with us

Policies and ethics